Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 22(1): e12581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38059419

RESUMO

The giant sulfide-oxidizing bacteria are particularly prone to preservation in the rock record, and their fossils have been identified in ancient phosphorites, cherts, and carbonates. This study reports putative spherical fossils preserved in the Devonian Hollard Mound hydrocarbon-seep deposit. Based on petrographical, mineralogical, and geochemical evidence the putative microfossils are interpreted as sulfide-oxidizing bacteria similar to the present-day genus Thiomargarita, which is also found at modern hydrocarbon seeps. The morphology, distribution, size, and occurrence of the fossilized cells show a large degree of similarity to their modern counterparts. Some of the spherical fossils adhere to worm tubes analogous to the occurrence of modern Thiomargarita on the tubes of seep-dwelling siboglinid worms. Fluorapatite crystals were identified within the fossilized cell walls, suggesting the intercellular storage of phosphorus analogous to modern Thiomargarita cells. The preservation of large sulfide-oxidizing bacteria was probably linked to changing biogeochemical processes at the Hollard Mound seep or, alternatively, may have been favored by the sulfide-oxidizing bacteria performing nitrate-dependent sulfide oxidation-a process known to induce carbonate precipitation. The presence of sulfide-oxidizing bacteria at a Devonian hydrocarbon seep highlights the similarities of past and present chemosynthesis-based ecosystems and provides valuable insight into the antiquity of biogeochemical processes and element cycling at Phanerozoic seeps.


Assuntos
Bactérias , Ecossistema , Marrocos , Hidrocarbonetos , Sulfetos , Oxirredução
2.
Cryst Growth Des ; 23(5): 3202-3212, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37159654

RESUMO

Dolomite [CaMg(CO3)2] formation under Earth surface conditions is considered largely inhibited, yet protodolomite (with a composition similar to dolomite but lacking cation ordering), and in some cases also dolomite, was documented in modern shallow marine and lacustrine, evaporative environments. Authigenic carbonate mud from Lake Neusiedl, a shallow, episodically evaporative lake in Austria consists mainly of Mg-calcite with zoning of Mg-rich and Mg-poor regions in µm-sized crystals. Within the Mg-rich regions, high-resolution transmission electron microscopy revealed < 5-nm-sized domains with dolomitic ordering, i.e., alternating lattice planes of Ca and Mg, in coherent orientation with the surrounding protodolomite. The calcite with less abundant Mg does not show such domains but is characterized by pitted surfaces and voids as a sign of dissolution. These observations suggest that protodolomite may overgrow Mg-calcite as a result of the changing chemistry of the lake water. During this process, oscillating concentrations (in particular of Mg and Ca) at the recrystallization front may have induced dissolution of Mg-calcite and growth of nanoscale domains of dolomite, which subsequently became incorporated as ordered domains in coherent orientation within less ordered regions. It is suggested that this crystallization pathway is capable of overcoming, at least at the nanoscale, the kinetic barrier to dolomite formation.

3.
Sci Rep ; 9(1): 604, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679710

RESUMO

Microbial life below the seafloor has changed over geological time, but these changes are often not obvious, as they are not recorded in the sediment. Sulphur (S) isotope values in pyrite extracted from a Plio- to Holocene sequence of the Peru Margin (Ocean Drilling Program, ODP, Site 1229) show a down-core pattern that correlates with the pattern of carbon (C) isotopes in diagenetic dolomite. Early formation of the pyrite is indicated by the mineralogical composition of iron, showing a high degree of pyritization throughout the sedimentary sequence. Hence, the S-record could not have been substantially overprinted by later pyrite formation. The S- and C-isotope profiles show, thus, evidence for two episodes of enhanced microbial methane production with a very shallow sulphate-methane transition zone. The events of high activity are correlated with zones of elevated organic C content in the stratigraphic sequence. Our results demonstrate how isotopic signatures preserved in diagenetic mineral phases provide information on changes of past biogeochemical activity in a dynamic sub-seafloor biosphere.


Assuntos
Isótopos de Carbono/análise , Sedimentos Geológicos/microbiologia , Isótopos de Enxofre/análise , Bactérias/química , Bactérias/metabolismo , Carbonato de Cálcio/química , Ferro/química , Magnésio/química , Metano/metabolismo , Oceanos e Mares , Espectrofotometria Atômica , Sulfatos/química , Sulfetos/química
4.
PLoS One ; 13(12): e0207305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566474

RESUMO

Seepage of methane (CH4) on land and in the sea may significantly affect Earth's biogeochemical cycles. However processes of CH4 generation and consumption, both abiotic and microbial, are not always clear. We provide new geochemical and isotope data to evaluate if a recently discovered CH4 seepage from the shallow seafloor close to the Island of Elba (Tuscany) and two small islands nearby are derived from abiogenic or biogenic sources and whether carbonate encrusted vents are the result of microbial or abiotic processes. Emission of gas bubbles (predominantly CH4) from unlithified sands was observed at seven spots in an area of 100 m2 at Pomonte (Island of Elba), with a total rate of 234 ml m-2 d-1. The measured carbon isotope values of CH4 of around -18‰ (VPDB) in combination with the measured δ2H value of -120‰ (VSMOW) and the inverse correlation of δ13C-value with carbon number of hydrocarbon gases are characteristic for sites of CH4 formation through abiogenic processes, specifically abiogenic formation of CH4 via reduction of CO2 by H2. The H2 for methanogenesis likely derives from ophiolitic host rock within the Ligurian accretionary prism. The lack of hydrothermal activity allows CH4 gas to become decoupled from the stagnant aqueous phase. Hence no hyperalkaline fluid is currently released at the vent sites. Within the seep area a decrease in porewater sulphate concentrations by ca. 5 mmol/l relative to seawater and a concomitant increase in sulphide and dissolved inorganic carbon (DIC) indicate substantial activity of sulphate-dependent anaerobic oxidation of methane (AOM). In absence of any other dissimilatory pathway, the δ13C-values between -17 and -5‰ in dissolved inorganic carbon and aragonite cements suggest that the inorganic carbon is largely derived from CH4. The formation of seep carbonates is thus microbially induced via anaerobic oxidation of abiotic CH4.


Assuntos
Carbonatos/química , Carbonatos/metabolismo , Metano/química , Metano/metabolismo , Anaerobiose , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Ilhas , Itália
5.
FEMS Microbiol Ecol ; 92(4): fiw054, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26960392

RESUMO

To gain insight into the bacterial communities involved in iron-(Fe) cycling under marine conditions, we analysed sediments with Fe-contents (0.5-1.5 wt %) from the suboxic zone at a marine site in the Skagerrak (SK) and a brackish site in the Bothnian Bay (BB) using 16S rRNA gene pyrosequencing. Several bacterial families, including Desulfobulbaceae, Desulfuromonadaceae and Pelobacteraceae and genera, includingDesulfobacterandGeobacter, known to reduce Fe were detected and showed highest abundance near the Fe(III)/Fe(II) redox boundary. Additional genera with microorganisms capable of coupling fermentation to Fe-reduction, includingClostridiumandBacillus, were observed. Also, the Fe-oxidizing families Mariprofundaceae and Gallionellaceae occurred at the SK and BB sites, respectively, supporting Fe-cycling. In contrast, the sulphate (SO4 (2-)) reducing bacteriaDesulfococcusandDesulfobacteriumwere more abundant at greater depths concurring with a decrease in Fe-reducing activity. The communities revealed by pyrosequencing, thus, match the redox stratification indicated by the geochemistry, with the known Fe-reducers coinciding with the zone of Fe-reduction. Not the intensely studied model organisms, such asGeobacterspp., but rather versatile microorganisms, including sulphate reducers and possibly unknown groups appear to be important for Fe-reduction in these marine suboxic sediments.


Assuntos
Bacillus/genética , Clostridium/genética , Deltaproteobacteria/genética , Compostos Férricos/metabolismo , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Bacillus/metabolismo , Sequência de Bases , Clostridium/metabolismo , DNA Bacteriano/genética , Deltaproteobacteria/metabolismo , Mar do Norte , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(45): 18098-103, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145422

RESUMO

The coupling of subseafloor microbial life to oceanographic and atmospheric conditions is poorly understood. We examined diagenetic imprints and lipid biomarkers of past subseafloor microbial activity to evaluate its response to glacial-interglacial cycles in a sedimentary section drilled on the Peruvian shelf (Ocean Drilling Program Leg 201, Site 1229). Multiple and distinct layers of diagenetic barite and dolomite, i.e., minerals that typically form at the sulfate-methane transition (SMT), occur at much shallower burial depth than the present SMT around 30 meters below seafloor. These shallow layers co-occur with peaks of (13)C-depleted archaeol, a molecular fossil of anaerobic methane-oxidizing Archaea. Present-day, non-steady state distributions of dissolved sulfate also suggest that the SMT is highly sensitive to variations in organic carbon flux to the surface shelf sediments that may lead to shoaling of the SMT. Reaction-transport modeling substantiates our hypothesis that shallow SMTs occur in response to cyclic sediment deposition with a high organic carbon flux during interglacials and a low organic carbon flux during glacial stages. Long diffusion distances expectedly dampen the response of deeply buried microbial communities to changes in sediment deposition and other oceanographic drivers over relatively short geological time scales, e.g., glacial-interglacial periods. However, our study demonstrates how dynamically sediment biogeochemistry of the Peru Margin has responded to glacial-interglacial change and how these changes are now preserved in the geological record. Such changes in subsurface biogeochemical zonation need to be taken into account to assess the role of the subseafloor biosphere in global element and redox cycling.


Assuntos
Sedimentos Geológicos/química , Fenômenos Geológicos , Metano/análise , Modelos Químicos , Oceanografia/métodos , Sulfato de Bário/análise , Biomarcadores/análise , Carbonato de Cálcio/análise , Isótopos de Carbono/análise , Lipídeos/análise , Magnésio/análise , Metano/metabolismo , Oxirredução , Oceano Pacífico , Peru , Fatores de Tempo
7.
J Clin Invest ; 122(3): 1119-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22354168

RESUMO

Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas Musculares/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Relógios Biológicos , Bradicardia/genética , Eletrocardiografia/métodos , Eletrofisiologia/métodos , Frequência Cardíaca , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Estrutura Terciária de Proteína , Telemetria/métodos , Fatores de Tempo
8.
Science ; 306(5705): 2216-21, 2004 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-15618510

RESUMO

Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary consistently from one subseafloor environment to another. Net rates of major activities principally rely on electron acceptors and electron donors from the photosynthetic surface world. At open-ocean sites, nitrate and oxygen are supplied to the deepest sedimentary communities through the underlying basaltic aquifer. In turn, these sedimentary communities may supply dissolved electron donors and nutrients to the underlying crustal biosphere.


Assuntos
Bactérias/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Carbono/metabolismo , Contagem de Colônia Microbiana , Transporte de Elétrons , Ferro/metabolismo , Manganês/metabolismo , Metano/metabolismo , Nitratos/metabolismo , Oxidantes/metabolismo , Oxirredução , Oceano Pacífico , Peru , Fotossíntese , Água do Mar/química , Sulfatos/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA