Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 87(6): 1183-99, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23336839

RESUMO

The type III secretion apparatus (T3SA) is a multi-protein complex central to the virulence of many Gram-negative pathogens. Currently, the mechanisms controlling the hierarchical addressing of needle subunits, translocators and effectors to the T3SA are still poorly understood. In Shigella, MxiC is known to sequester effectors within the cytoplasm prior to receiving the activation signal from the needle. However, molecules involved in linking the needle and MxiC are unknown. Here, we demonstrate a molecular interaction between MxiC and the predicted inner-rod component MxiI suggesting that this complex plugs the T3SA entry gate. Our results suggest that MxiI-MxiC complex dissociation facilitates the switch in secretion from translocators to effectors. We identified MxiC(F)(206)(S) variant, unable to interact with MxiI, which exhibits a constitutive secretion phenotype although it remains responsive to induction. Moreover, we identified the mxiI(Q67A) mutant that only secretes translocators, a phenotype that was suppressed by coexpression of the MxiC(F)(206)(S) variant. We demonstrated the interaction between MxiI and MxiC homologues in Yersinia and Salmonella. Lastly, we identified an interaction between MxiC and chaperone IpgC which contributes to understanding how translocators secretion is regulated. In summary, this study suggests the existence of a widely conserved T3S mechanism that regulates effectors secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Shigella flexneri/metabolismo , Proteínas de Bactérias/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Salmonella/genética , Salmonella/metabolismo , Shigella flexneri/genética , Especificidade por Substrato , Yersinia/genética , Yersinia/metabolismo
2.
Biochemistry ; 50(13): 2530-40, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21329359

RESUMO

To get access to iron, Pseudomonas aeruginosa produces the siderophore pyoverdine (PVD), composed of a fluorescent chromophore linked to an octapeptide, and its corresponding outer membrane transporter FpvA. This transporter is composed of three domains: a ß-barrel inserted into the membrane, a plug that closes the channel formed by the barrel, and a signaling domain in the periplasm. The plug and the signaling domain are separated by a sequence of five residues called the TonB box, which is necessary for the interaction of FpvA with the inner membrane TonB protein. Genetic deletion of the plug domain resulted in the presence of a ß-barrel in the outer membrane unable to bind and transport PVD-Fe. Expression of the soluble plug domain with the TonB box inhibited PVD-(55)Fe uptake most likely through interaction with TonB in the periplasm. A reconstituted FpvA in the bacterial outer membrane was obtained by the coexpression of separately encoded plug and ß-barrel domains, each endowed with a signal sequence and a signaling domain. This resulted in polypeptide complementation after secretion across the cytoplasmic membrane. The reconstituted FpvA bound PVD-Fe with the same affinity as wild-type FpvA, indicating that the resulting transporter is correctly folded and reconstituted in the outer membrane. PVD-Fe uptake was TonB-dependent but 75% less efficient compared to wild-type FpvA. These data are consistent with a gated mechanism in which no open channel with a complete removal of the plug domain for PVD-Fe diffusion is formed in FpvA at any point during the uptake cycle.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Oligopeptídeos/farmacocinética , Pseudomonas aeruginosa/metabolismo , Sideróforos/farmacocinética , Motivos de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Imunoprecipitação , Ligantes , Proteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão
3.
Proteins ; 78(2): 286-94, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19731368

RESUMO

Shigella dysentriae and other Gram-negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 A resolution the 3D structure of the TonB-dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C-terminal domain that folds into a 22-stranded transmembrane beta-barrel, which is filled by the N-terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 A apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA-Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N-terminal TonB-box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB-box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB-box.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Disenteria Bacilar/microbiologia , Heme/metabolismo , Shigella dysenteriae/química , Shigella dysenteriae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Hemoglobinas/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
4.
Comp Biochem Physiol C Toxicol Pharmacol ; 150(2): 285-90, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19470410

RESUMO

Snake venoms contain metalloproteinases that contribute to the local effects observed after envenoming. In this study, a hemorrhagic metalloproteinase (CcH1) was purified from Cerastes cerastes venom by a combination of gel filtration, ion exchange, affinity and RP-HPLC chromatography. The hemorrhagin was homogeneous on SDS-PAGE, with a molecular mass of 25 kDa. Isoelectric focusing revealed a pI of 5.5. CcH1 displayed hemorrhagic and proteolytic activities, but no esterolytic activity. The hemorrhagic and proteolytic activities of CcH1 were inhibited by EDTA and 1,10-phenanthroline, but not by PMSF, suggesting that this protein is a zinc-metalloproteinase. Furthermore, the hemorrhagic and proteolytic activities of CcH1 were stable in solution at up to 40 degrees C, with a loss of activity at > or =70 degrees C. The molecular mass and the inhibition assays suggest that the metalloproteinase CcH1 belongs to class P-I of SVMPs.


Assuntos
Metaloendopeptidases/isolamento & purificação , Venenos de Víboras/enzimologia , Viperidae , Animais , Cromatografia de Afinidade , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Ácido Edético/farmacologia , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Hemorragia/induzido quimicamente , Focalização Isoelétrica , Masculino , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Metaloendopeptidases/toxicidade , Camundongos , Peso Molecular , Fenantrolinas/farmacologia , Inibidores de Proteases/farmacologia , Desnaturação Proteica , Temperatura , Zinco/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-19342792

RESUMO

As part of efforts towards understanding the crystallization of membrane proteins and membrane transport across the outer membrane of Gram-negative bacteria, the TonB-dependent haem outer membrane transporter ShuA of Shigella dysenteriae bound to heavy atoms was crystallized in several crystallization conditions using detergents. The insertion of a His(6) tag into an extracellular loop of ShuA, instead of downstream of the Escherichia coli peptide signal, allowed efficient targeting to the outer membrane and the rapid preparation of crystallizable protein. Crystals diffracting X-rays beyond 3.5 A resolution were obtained by co-crystallizing ShuA with useful heavy atoms for phasing (Eu, Tb, Pb) by the MAD method at the synchrotron, and the SAD or SIRAS method at the Cu wavelength. The authors collected X-ray diffraction data at 2.3 A resolution using one crystal of ShuA-Pb, and at 3.2 A resolution at an energy remote from the Pb M absorption edges for phasing on PROXIMA-1 at SOLEIL.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Membrana Celular/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Shigella dysenteriae/química , Difração de Raios X , Apoproteínas , Proteínas de Bactérias/metabolismo , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Análise Espectral
6.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 4): 326-31, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19307713

RESUMO

Bordetella pertussis is the bacterial agent of whooping cough in humans. Under iron-limiting conditions, it produces the siderophore alcaligin. Released to the extracellular environment, alcaligin chelates iron, which is then taken up as a ferric alcaligin complex via the FauA outer membrane transporter. FauA belongs to a family of TonB-dependent outer membrane transporters that function using energy derived from the proton motive force. Using an in-house protocol for membrane-protein expression, purification and crystallization, FauA was crystallized in its apo form together with three other TonB-dependent transporters from different organisms. Here, the protocol used to study FauA is described and its three-dimensional structure determined at 2.3 A resolution is discussed.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Bordetella pertussis/química , Ácidos Hidroxâmicos/metabolismo , Ferro/metabolismo , Receptores de Superfície Celular/química , Apoproteínas/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Proteica , Mapeamento de Interação de Proteínas , Prótons , Receptores de Superfície Celular/isolamento & purificação , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA