Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 5(2): 203-210, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28324582

RESUMO

The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented herein are from a high-density SNP-based genetic linkage map of MD 96-5722 (a.k.a 'Monocacy') by 'Spencer' recombinant inbred line using SoySNP6K Illumina Infinium BeadChip genotyping array. Ninety-four F5:7 lines were evaluated for 2 years (2010 and 2011) at two locations (Carbondale and Valmeyer) in southern Illinois, USA to identify QTL controlling SDS resistance using disease index (DX). Composite interval mapping identified 19 SDS controlling QTL which were mapped on 11 separate linkage group (LG) or chromosomes (Chr) out of 20 LG or Chr of soybean genome. Many of these significant QTL identified in one environment/year were confirmed in another year or environment, which suggests a common genetic effects and modes of the pathogen. These new QTL are useful sources for SDS resistance studies in soybean breeding, complementing previously reported loci.

2.
Curr Issues Mol Biol ; 11 Suppl 1: i11-19, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19193960

RESUMO

Multigeneic QTL present significant problems to analysis. Resistance to soybean (Glycine max (L) Merr.) sudden death syndrome (SDS) caused by Fusarium virguliforme was partly underlain by QRfs2 that was clustered with, or pleiotropic to, the multigeneic rhg1 locus providing resistance to soybean cyst nematode (SCN; Heterodera glycines). A group of five genes were found between the two markers that delimited the Rfs2/rhg1 locus. One of the five genes was predicted to encode an unusual diphenol oxidase (laccase; EC 1.10.3.2). The aim of this study was to characterize this member of the soybean laccase gene-family and explore its involvement in SDS resistance. A genomic clone and a full length cDNA was isolated from resistant cultivar 'Forrest' that were different among susceptible cultivars 'Asgrow 3244' and 'Williams 82' at four residues R/H168, I/M271, R/H330, E/K470. Additional differences were found in six of the seven introns and the promoter region. Transcript abundance (TA) among genotypes that varied for resistance to SDS or SCN did not differ significantly. Therefore the protein activity was inferred to underlie resistance. Protein expressed in yeast pYES2/NTB had weak enzyme activity with common substrates but good activity with root phenolics. The Forrest isoform may underlie both QRfs2 and rhg1.


Assuntos
Glycine max/genética , Lacase/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/metabolismo , Fusarium/metabolismo , Lacase/genética , Dados de Sequência Molecular , Nematoides/fisiologia , Filogenia , Proteínas de Plantas/genética , Glycine max/enzimologia , Glycine max/microbiologia , Glycine max/parasitologia , Síndrome
3.
Theor Appl Genet ; 117(7): 1107-18, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18663424

RESUMO

The tobamovirus resistance gene L(3) of Capsicum chinense was mapped using an intra-specific F2 population (2,016 individuals) of Capsicum annuum cultivars, into one of which had been introduced the C. chinense L(3) gene, and an inter-specific F2 population (3,391 individuals) between C. chinense and Capsicum frutescence. Analysis of a BAC library with an AFLP marker closely linked to L(3)-resistance revealed the presence of homologs of the tomato disease resistance gene I2. Partial or full-length coding sequences were cloned by degenerate PCR from 35 different pepper I2 homologs and 17 genetic markers were generated in the inter-specific combination. The L(3) gene was mapped between I2 homolog marker IH1-04 and BAC-end marker 189D23M, and located within a region encompassing two different BAC contigs consisting of four and one clones, respectively. DNA fiber FISH analysis revealed that these two contigs are separated from each other by about 30 kb. DNA fiber FISH results and Southern blotting of the BAC clones suggested that the L(3) locus-containing region is rich in highly repetitive sequences. Southern blot analysis indicated that the two BAC contigs contain more than ten copies of the I2 homologs. In contrast to the inter-specific F2 population, no recombinant progeny were identified to have a crossover point within two BAC contigs consisting of seven and two clones in the intra-specific F2 population. Moreover, distribution of the crossover points differed between the two populations, suggesting linkage disequilibrium in the region containing the L locus.


Assuntos
Capsicum/genética , DNA de Plantas/química , Genes de Plantas/fisiologia , Doenças das Plantas/genética , Sequências Repetitivas de Ácido Nucleico , Tobamovirus , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Southern Blotting , Capsicum/virologia , Passeio de Cromossomo , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Mapeamento de Sequências Contíguas , Marcadores Genéticos , Imunidade Inata/genética , Hibridização in Situ Fluorescente , Desequilíbrio de Ligação , Doenças das Plantas/virologia
4.
Genome ; 50(9): 871-5, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17893728

RESUMO

Pea (Pisum sativum L.) has a genome of about 4 Gb that appears to share conserved synteny with model legumes having genomes of 0.2-0.4 Gb despite extensive intergenic expansion. Pea plant inventory (PI) accession 269818 has been used to introgress genetic diversity into the cultivated germplasm pool. The aim here was to develop pea bacterial artificial chromosome (BAC) libraries that would enable the isolation of genes involved in plant disease resistance or control of economically important traits. The BAC libraries encompassed about 3.2 haploid genome equivalents consisting of partially HindIII-digested DNA fragments with a mean size of 105 kb that were inserted in 1 of 2 vectors. The low-copy oriT-based T-DNA vector (pCLD04541) library contained 55 680 clones. The single-copy oriS-based vector (pIndigoBAC-5) library contained 65 280 clones. Colony hybridization of a universal chloroplast probe indicated that about 1% of clones in the libraries were of chloroplast origin. The presence of about 0.1% empty vectors was inferred by white/blue colony plate counts. The usefulness of the libraries was tested by 2 replicated methods. First, high-density filters were probed with low copy number sequences. Second, BAC plate-pool DNA was used successfully to PCR amplify 7 of 9 published pea resistance gene analogs (RGAs) and several other low copy number pea sequences. Individual BAC clones encoding specific sequences were identified. Therefore, the HindIII BAC libraries of pea, based on germplasm accession PI 269818, will be useful for the isolation of genes underlying disease resistance and other economically important traits.


Assuntos
Cromossomos Artificiais Bacterianos/química , Biblioteca Gênica , Genes de Plantas , Pisum sativum/genética , Marcadores Genéticos , Pisum sativum/classificação
5.
Mol Genet Genomics ; 276(6): 503-16, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17024428

RESUMO

The rhg1 gene or genes lie at a recessive or co-dominant locus, necessary for resistance to all Hg types of the soybean (Glycine max (L.) Merr.) cyst nematode (Heterodera glycines I.). The aim here was to identify nucleotide changes within a candidate gene found at the rhg1 locus that were capable of altering resistance to Hg types 0 (race 3). A 1.5 +/- 0.25 cM region of chromosome 18 (linkage group G) was shown to encompass rhg1 using recombination events from four near isogenic line populations and nine DNA markers. The DNA markers anchored two bacterial artificial chromosome (BAC) clones 21d9 and 73p6. A single receptor like kinase (RLK; leucine rich repeat-transmembrane-protein kinase) candidate resistance gene was amplified from both BACs using redundant primers. The DNA sequence showed nine alleles of the RLK at Rhg1 in the soybean germplasm. Markers designed to detect alleles showed perfect association between allele 1 and resistance to soybean cyst nematode Hg types 0 in three segregating populations, fifteen additional selected recombination events and twenty-two Plant Introductions. A quantitative trait nucleotide (QTN) [corrected] in the RLK at rhg1 was inferred that alters A87 to V87 in the context of H274 rather than N274. [corrected] Contiguous DNA sequence of 315 kbp of chromosome 18 (about 2 cM) contained additional gene candidates that may modulate resistance to other Hg-types including a variant laccase, a hydrogen-sodium ion antiport and two proteins of unknown function. A molecular basis for recessive and co-dominant resistance that involves interactions among paralagous disease-resistance genes was inferred that would improve methods for developing new nematode-resistant soybean cultivars.


Assuntos
Mapeamento Cromossômico , Genes de Plantas/genética , Glycine max/genética , Imunidade Inata/genética , Doenças das Plantas/parasitologia , Tylenchoidea , Animais , Sequência de Bases , Southern Blotting , Cromossomos Artificiais Bacterianos , Cruzamentos Genéticos , Genômica , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Doenças das Plantas/genética , Análise de Sequência de DNA
6.
Theor Appl Genet ; 113(6): 1015-26, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16953420

RESUMO

DNA marker maps based on single populations are the basis for gene, loci and genomic analyses. Individual maps can be integrated to produce composite maps with higher marker densities if shared marker orders are consistent. However, estimates of marker order in composite maps must include sets of markers that were not polymorphic in multiple populations. Often some of the pooled markers were not codominant, or were not correctly scored. The soybean composite map was composed of data from five separate populations based on northern US germplasm but does not yet include 'Essex' by 'Forrest' recombinant inbred line (RIL) population (E x F) or any southern US soybean cultivars. The objectives were, to update the E x F map with codominant markers, to compare marker orders among this map, the Forrest physical map and the composite soybean map and to compare QTL identified by composite interval maps to the earlier interval maps. Two hundred and thirty seven markers were used to construct the core of the E x F map. The majority of marker orders were consistent between the maps. However, 19 putative marker inversions were detected on 12 of 20 linkage groups (LG). Eleven marker distance compressions were also found. The number of inverted markers ranged from 1 to 2 per LG. Thus, marker order inversions may be common in southern compared to northern US germplasm. A total of 61 QTL among 37 measures of six traits were detected by composite interval maps, interval maps and single point analysis. Seventeen of the QTL found in composite intervals had previously been detected among the 29 QTL found in simple interval maps. The genomic locations of the known QTL were more closely delimited. A genome sequencing project to compare Southern and Northern US soybean cultivars would catalog and delimit inverted regions and the associated QTL. Gene introgression in cultivar development programs would be accelerated.


Assuntos
Ligação Genética , Glycine max/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Marcadores Genéticos , Genoma de Planta , Polimorfismo Genético
7.
Theor Appl Genet ; 109(5): 1041-50, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15164176

RESUMO

Two plant-transformation-competent large-insert binary clone bacterial artificial chromosome (hereafter BIBAC) libraries were previously constructed for soybean cv. Forrest, using BamHI or HindIII. However, they are not well suited for clone-based genomic sequencing due to their larger ratio of vector to insert size (27.6 kbp:125 kbp). Therefore, we developed a larger-insert bacterial artificial chromosome (BAC) library for the genotype in a smaller vector (pECBAC1), using EcoRI. The BAC library contains 38,400 clones; about 99.1% of the clones have inserts; the average insert size is 157 kbp; and the ratio of vector to insert size is much smaller (7.5 kbp:157 kbp). Colony hybridization with probes derived from several chloroplast and mitochondrial genes showed that 0.89% and 0.45% of the clones were derived from the chloroplast and mitochondrial genomes, respectively. Considering these data, the library represents 5.4 haploid genomes of soybean. The library was hybridized with six RFLP marker probes, 5S rDNA and 18S-5.8S-25S rDNA, respectively. Each RFLP marker hybridized to about six clones, and the 5S and 18S-5.8S-25S rDNA probes collectively hybridized to 402 BACs--about 1.05% of the clones in the library. The BAC library complements the existing soybean Forrest BIBAC libraries by using different restriction enzymes and vector systems. Together, the BAC and BIBAC libraries encompass 13.2 haploid genomes, providing the most comprehensive clone resource for a single soybean genotype for public genome research. We show that the BAC library has enhanced the development of the soybean whole-genome physical map and use of three complementary BAC libraries improves genome physical mapping by fingerprint analysis of most of the clones of the library. The rDNA-containing clones were also fingerprinted to evaluate the feasibility of constructing contig maps of the rDNA regions. It was found that physical maps for the rDNA regions could not be readily constructed by fingerprint analysis, using one or two restriction enzymes. Additional data to fingerprints and/or different fingerprinting methods are needed to build contig maps for such highly tandem repetitive regions and thus, the physical map of the entire soybean genome.


Assuntos
Cromossomos Artificiais Bacterianos , Biblioteca Gênica , Glycine max/genética , Mapeamento Físico do Cromossomo , Impressões Digitais de DNA , Desoxirribonuclease EcoRI , Genômica/métodos , Polimorfismo de Fragmento de Restrição
8.
J Biomed Biotechnol ; 2004(1): 52-60, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15123888

RESUMO

Soybean seeds contain large amounts of isoflavones or phytoestrogens such as genistein, daidzein, and glycitein that display biological effects when ingested by humans and animals. In seeds, the total amount, and amount of each type, of isoflavone varies by 5 fold between cultivars and locations. Isoflavone content and quality are one key to the biological effects of soy foods, dietary supplements, and nutraceuticals. Previously we had identified 6 loci (QTL) controlling isoflavone content using 150 DNA markers. This study aimed to identify and delimit loci underlying heritable variation in isoflavone content with additional DNA markers. We used a recombinant inbred line (RIL) population ( $n=100$ ) derived from the cross of “Essex” by “Forrest,” two cultivars that contrast for isoflavone content. Seed isoflavone content of each RIL was determined by HPLC and compared against 240 polymorphic microsatellite markers by one-way analysis of variance. Two QTL that underlie seed isoflavone content were newly discovered. The additional markers confirmed and refined the positions of the six QTL already reported. The first new region anchored by the marker BARC-Satt063 was significantly associated with genistein ( $P=0.009$, $Rcirc;2=29.5\%$ ) and daidzein ( $P=0.007$, $Rcirc;2=17.0\%$ ). The region is located on linkage group B2 and derived the beneficial allele from Essex. The second new region defined by the marker BARC-Satt129 was significantly associated with total glycitein ( $P=0.0005$, $Rcirc;2=32.0\%$ ). The region is located on linkage group D1a+Q and also derived the beneficial allele from Essex. Jointly the eight loci can explain the heritable variation in isoflavone content. The loci may be used to stabilize seed isoflavone content by selection and to isolate the underlying genes.

9.
Theor Appl Genet ; 108(4): 663-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14564396

RESUMO

A chickpea ( Cicer arietinum L.) Bacterial Artificial Chromosome (BAC) library from germplasm line, FLIP 84-92C, was constructed to facilitate positional cloning of disease resistance genes and physical mapping of the genome. The BAC library has 23,780 colonies and was calculated to comprise approximately 3.8 haploid-genome equivalents. Studies on 120 randomly chosen clones revealed an average insert size of 100 kb and no empty clones. Colony hybridization using the RUBP carboxylase large subunit as a probe resulted in a very low percentage of chloroplast DNA contamination. Two clones with a combined insert size of 200 kb were isolated after the library was screened with a Sequence Tagged Microsatellite Site (STMS) marker, Ta96, which is tightly linked to a gene ( Foc3) for resistance to fusarium wilt caused by Fusarium oxysporum Schlechtend.: Fr. f. sp. ciceris (Padwick) race 3 at a genetic distance of 1 cM. Also, these two clones were analyzed with several resistance gene analog (RGA) markers. End sequencing of these clones did not identify repetitive sequences. The development of the BAC library will facilitate isolation of Foc3 and allow us to perform physical mapping of this genomic region where additional R genes against other races of the wilt causing pathogen are positioned.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cicer/genética , Imunidade Inata/genética , Doenças das Plantas/microbiologia , DNA/isolamento & purificação , Primers do DNA , Fusarium , Repetições de Microssatélites/genética , Sondas RNA , Análise de Sequência de DNA , Sitios de Sequências Rotuladas
10.
Crop Sci ; 42(1): 271-277, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11756285

RESUMO

Molecular makers linked to quantitative trait loci (QTL) can assist soybean [Glycine max (L.) Merr.] breeders to combine traits of low heritability, such as yield, with disease resistance. The objective of this study was to identify markers linked to yield QTL in two recombinant inbred line (RIL) populations ['Essex' x 'Forrest' (ExF; n = 100) and 'Flyer' x 'Hartwig' (FxH; n = 94)] that also segregate for soybean cyst nematode (SCN) resistance genes (rhg1 and Rhg4). Each population was yield tested in four environments between 1996 and 1999. The resistant parents produced lower yields. Heritability of yield across four environments was 47% for ExF and 57% for FxH. Yield was normally distributed in both populations. High yielding, SCN resistant transgressive segregants were not observed. In the ExF RIL population, 134 microsatellite markers were compared against yield by ANOVA and MAPMAKER QTL. Regions associated with yield were identified by SATT294 on linkage group (LG.) C1 (P = 0.006, R(2) = 10%), SATT440 on LG. I (P = 0.007, R(2) = 10%), and SATT337 on LG. K (P = 0.004, R(2) = 10%). Essex provided the beneficial allele at SATT337. Mean yields among FxH RILs were compared against 33 microsatellite markers from LG. K. In addition 136 markers from randomly selected LGs were compared with extreme phenotypes by bulk segregant analysis. Two regions on LG. K (20 cM apart) associated with yield were identified by SATT326 (P = 0.0004, R(2) = 15%) and SATT539 (P = 0.0008, R(2) = 14%). Flyer provided both beneficial alleles. Both populations revealed a yield QTL in the interval (5 cM) between SATT337 and SATT326. These populations may share a common allele for yield in this region, given that about 40% of Flyer genome derived from Essex.

11.
Theor Appl Genet ; 104(2-3): 294-300, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12582700

RESUMO

Soybean [ Glycine max (L.) Merr.] sudden death syndrome (SDS) caused by Fusarium solani f. sp. glycines results in severe yield losses. Resistant cultivars offer the most-effective protection against yield losses but resistant cultivars such as 'Forrest' and 'Pyramid' vary in the nature of their response to SDS. Loci underlying SDS resistance in 'Essex' x Forrest are well defined. Our objectives were to identify and characterize loci and alleles that underlie field resistance to SDS in Pyramidx'Douglas'. SDS disease incidence and disease severity were determined in replicated field trials in six environments over 4 years. One hundred and twelve polymorphic DNA markers were compared with SDS disease response among 90 recombinant inbred lines from the cross PyramidxDouglas. Two quantitative trait loci (QTLs) for resistance to SDS derived their beneficial alleles from Pyramid, identified on linkage group G by BARC-Satt163 (261-bp allele, P=0.0005, R(2)=16.0%) and linkage group N by BARC-Satt080 (230-bp allele, P=0.0009, R(2)=15.6%). Beneficial alleles of both QTLs were previously identified in Forrest. A QTL for re- sistance to SDS on linkage group C2 identified by BARC-Satt307 (292-bp allele, P=0.0008, R(2)=13.6%) derived the beneficial allele from Douglas. A beneficial allele of this QTL was previously identified in Essex. Recombinant inbred lines that carry the beneficial alleles for all three QTLs for resistance to SDS were significantly ( P

12.
Genetics ; 159(3): 1231-42, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11729165

RESUMO

The genome of the model plant species Arabidopsis thaliana has recently been sequenced. To accelerate its current genome research, we developed a whole-genome, BAC/BIBAC-based, integrated physical, genetic, and sequence map of the A. thaliana ecotype Columbia. This new map was constructed from the clones of a new plant-transformation-competent BIBAC library and is integrated with the existing sequence map. The clones were restriction fingerprinted by DNA sequencing gel-based electrophoresis, assembled into contigs, and anchored to an existing genetic map. The map consists of 194 BAC/BIBAC contigs, spanning 126 Mb of the 130-Mb Arabidopsis genome. A total of 120 contigs, spanning 114 Mb, were anchored to the chromosomes of Arabidopsis. Accuracy of the integrated map was verified using the existing physical and sequence maps and numerous DNA markers. Integration of the new map with the sequence map has enabled gap closure of the sequence map and will facilitate functional analysis of the genome sequence. The method used here has been demonstrated to be sufficient for whole-genome physical mapping from large-insert random bacterial clones and thus is applicable to rapid development of whole-genome physical maps for other species.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico , Genoma de Planta , Mapeamento de Sequências Contíguas , Biblioteca Gênica , Genoma , Modelos Genéticos , Mapeamento Físico do Cromossomo
13.
Mol Genet Genomics ; 265(2): 207-14, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11361330

RESUMO

The conversion of AFLP bands into polymorphic sequence-tagged-site (STS) markers is necessary for high-throughput genotype scoring. Technical hurdles that must be overcome arise from genome complexity (particularly sequence duplication), from the low-molecular-weight nature of the AFLP bands and from the location of the polymorphism within the AFLP band. We generated six STS markers from ten AFLP bands (four AFLPs were from co-dominant pairs of bands) in soybean (Glycine max). The markers were all linked to one of two loci, rhg1 on linkage group G and Rhg4 on linkage group A2, that confer resistance to the soybean cyst nematode (Heterodera glycines I.). When the polymorphic AFLP band sequence contained a duplicated sequence or could not be converted to a locus-specific STS marker, direct sequencing of BAC clones anchored to a physical map generated locus-specific flanking sequences at the polymorphic locus. When the polymorphism was adjacent to the restriction site used in the AFLP analysis, single primer extension was performed to reconstruct the polymorphism. The six converted AFLP markers represented 996 bp of sequence from alleles of each of two cultivars and identified eight insertions or deletions, two microsatellites and eight single-nucleotide polymorphisms (SNPs). The polymorphic sequences were used to design a non-electrophoretic, fluorometric assay (based on the TaqMan technology) and/or develop electrophoretic STS markers for high-throughput genotype determination during marker-assisted breeding for resistance to cyst nematode. We conclude that the converted AFLP markers contained polymorphism at a 10- to 20-fold higher frequency than expected for adapted soybean cultivars and that the efficiency of AFLP band conversion to STS can be improved using BAC libraries and physical maps. The method provides an efficient tool for SNP and STS discovery suitable for marker-assisted breeding and genomics.


Assuntos
DNA de Plantas , Glycine max/genética , Polimorfismo Genético , Alelos , Sequência de Bases , Clonagem Molecular , Marcadores Genéticos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Sitios de Sequências Rotuladas
14.
Mol Plant Microbe Interact ; 14(3): 422-5, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11277441

RESUMO

We constructed a BAC library of the model legume Lotus japonicus with a 6-to 7-fold genome coverage. We used vector PCLD04541, which allows direct plant transformation by BACs. The average insert size is 94 kb. Clones were stable in Escherichia coli and Agrobacterium tumefaciens.


Assuntos
Agrobacterium tumefaciens/genética , Cromossomos Artificiais Bacterianos/genética , DNA de Plantas/genética , Genoma de Planta , Magnoliopsida/genética , Southern Blotting , Clonagem Molecular , DNA de Plantas/análise , Escherichia coli/genética , Vetores Genéticos , Reação em Cadeia da Polimerase , Transformação Genética
15.
J Biomed Biotechnol ; 1(1): 38-44, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-12488625

RESUMO

Soy products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals, these effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key to their biological effect. Our objective was to identify loci that underlie isoflavone content in soybean seeds. The study involved 100 recombinant inbred lines (RIL) from the cross of 'Essex' by 'Forrest,' two cultivars that contrast for isoflavone content. Isoflavone content of seeds from each RIL was determined by high performance liquid chromatography (HPLC). The distribution of isoflavone content was continuous and unimodal. The heritability estimates on a line mean basis were 79% for daidzein, 22% for genistein, and 88% for glycitein. Isoflavone content of soybean seeds was compared against 150 polymorphic DNA markers in a one-way analysis of variance. Four genomic regions were found to be significantly associated with the isoflavone content of soybean seeds across both locations and years. Molecular linkage group B1 contained a major QTL underlying glycitein content (P = 0.0001, R(2) = 50.2%), linkage group N contained a QTL for glycitein (P = 0.0033, R(2) = 11.1%) and a QTL for daidzein (P = 0.0023, R(2) = 10.3%) and linkage group A1 contained a QTL for daidzein (P = 0.0081, R(2) = 9.6%). Selection for these chromosomal regions in a marker assisted selection program will allow for the manipulation of amounts and profiles of isoflavones (genistein, daidzein, and glycitein) content of soybean seeds. In addition, tightly linked markers can be used in map based cloning of genes associated with isoflavone content.

17.
Mol Gen Genet ; 249(1): 74-81, 1995 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-8552036

RESUMO

The R1 allele confers on potato a race-specific resistance to Phytophthora infestans. The corresponding genetic locus maps on chromosome V in a region in which several other resistance genes are also located. As part of a strategy for cloning R1, a high-resolution genetic map was constructed for the segment of chromosome V that is bordered by the RFLP loci GP21 and GP179 and includes the R1 locus. Bulked segregant analysis and markers based on amplified fragment length polymorphisms (AFLP markers) were used to select molecular markers closely linked to R1. Twenty-nine of approximately 3200 informative AFLP loci displayed linkage to the R1 locus. Based on the genotypic analysis of 461 gametes, eight loci mapped within the GP21-GP179 interval. Two of those could not be separated from R1 by recombination. For genotyping large numbers of plants with respect to the flanking markers GP21 and GP179 PCR based assays were also developed which allowed marker-assisted selection of plants with genotypes Rr and rr and of recombinant plants.


Assuntos
Mapeamento Cromossômico , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Solanum tuberosum/genética , Alelos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Marcadores Genéticos , Predisposição Genética para Doença , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Phytophthora , Doenças das Plantas , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Solanum tuberosum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA