Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 52: 131-145, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29908304

RESUMO

New approaches are needed to assess the effects of inhaled substances on human health. These approaches will be based on mechanisms of toxicity, an understanding of dosimetry, and the use of in silico modeling and in vitro test methods. In order to accelerate wider implementation of such approaches, development of adverse outcome pathways (AOPs) can help identify and address gaps in our understanding of relevant parameters for model input and mechanisms, and optimize non-animal approaches that can be used to investigate key events of toxicity. This paper describes the AOPs and the toolbox of in vitro and in silico models that can be used to assess the key events leading to toxicity following inhalation exposure. Because the optimal testing strategy will vary depending on the substance of interest, here we present a decision tree approach to identify an appropriate non-animal integrated testing strategy that incorporates consideration of a substance's physicochemical properties, relevant mechanisms of toxicity, and available in silico models and in vitro test methods. This decision tree can facilitate standardization of the testing approaches. Case study examples are presented to provide a basis for proof-of-concept testing to illustrate the utility of non-animal approaches to inform hazard identification and risk assessment of humans exposed to inhaled substances.


Assuntos
Alternativas aos Testes com Animais , Testes de Toxicidade Aguda , Administração por Inalação , Árvores de Decisões , Humanos
2.
Toxicol In Vitro ; 48: 53-70, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29277654

RESUMO

Inhalation toxicity testing, which provides the basis for hazard labeling and risk management of chemicals with potential exposure to the respiratory tract, has traditionally been conducted using animals. Significant research efforts have been directed at the development of mechanistically based, non-animal testing approaches that hold promise to provide human-relevant data and an enhanced understanding of toxicity mechanisms. A September 2016 workshop, "Alternative Approaches for Acute Inhalation Toxicity Testing to Address Global Regulatory and Non-Regulatory Data Requirements", explored current testing requirements and ongoing efforts to achieve global regulatory acceptance for non-animal testing approaches. The importance of using integrated approaches that combine existing data with in vitro and/or computational approaches to generate new data was discussed. Approaches were also proposed to develop a strategy for identifying and overcoming obstacles to replacing animal tests. Attendees noted the importance of dosimetry considerations and of understanding mechanisms of acute toxicity, which could be facilitated by the development of adverse outcome pathways. Recommendations were made to (1) develop a database of existing acute inhalation toxicity data; (2) prepare a state-of-the-science review of dosimetry determinants, mechanisms of toxicity, and existing approaches to assess acute inhalation toxicity; (3) identify and optimize in silico models; and (4) develop a decision tree/testing strategy, considering physicochemical properties and dosimetry, and conduct proof-of-concept testing. Working groups have been established to implement these recommendations.


Assuntos
Regulamentação Governamental , Exposição por Inalação/efeitos adversos , Testes de Toxicidade Aguda/métodos , Alternativas aos Testes com Animais , Animais , Simulação por Computador , Bases de Dados Factuais , Educação , Humanos , Pneumopatias/induzido quimicamente , Modelos Estatísticos , Relação Quantitativa Estrutura-Atividade
3.
Altern Lab Anim ; 44(5): 495-498, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27805832

RESUMO

In 2015, the PETA International Science Consortium Ltd. was awarded the Lush Training Prize for its broad approach to education and training on the effective use of human-relevant, non-animal research techniques. The prize was awarded for work that included hosting workshops and webinars, initiating in-person training sessions and developing educational resources. The Consortium works closely with industry and regulatory agencies to identify and overcome barriers to the validation and use of alternatives to animal testing, by using an approach that identifies, promotes and verifies the implementation of these methods. The Consortium's recent activities toward replacing tests on animals for nanomaterials, pesticides and medical devices, are described, as examples of projects with broad applicability aimed at large-scale regulatory change.


Assuntos
Alternativas aos Testes com Animais/legislação & jurisprudência , Alternativas aos Testes com Animais/métodos , Testes de Toxicidade/métodos , Bem-Estar do Animal/organização & administração , Animais , Cooperação Internacional , Legislação de Medicamentos
4.
ACS Nano ; 10(5): 5070-85, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27035850

RESUMO

Uptake and translocation of short functionalized multi-walled carbon nanotubes (short-fMWCNTs) through the pulmonary respiratory epithelial barrier depend on physicochemical property and cell type. Two monoculture models, immortalized human alveolar epithelial type 1 (TT1) cells and primary human alveolar epithelial type 2 cells (AT2), which constitute the alveolar epithelial barrier, were employed to investigate the uptake and transport of 300 and 700 nm in length, poly(4-vinylpyridine)-functionalized, multi-walled carbon nanotubes (p(4VP)-MWCNTs) using quantitative imaging and spectroscopy techniques. The p(4VP)-MWCNT exhibited no toxicity on TT1 and AT2 cells, but significantly decreased barrier integrity (*p < 0.01). Uptake of p(4VP)-MWCNTs was observed in 70% of TT1 cells, correlating with compromised barrier integrity and basolateral p(4VP)-MWCNT translocation. There was a small but significantly greater uptake of 300 nm p(4VP)-MWCNTs than 700 nm p(4VP)-MWCNTs by TT1 cells. Up to 3% of both the 300 and 700 nm p(4VP)-MWCNTs reach the basal chamber; this relatively low amount arose because the supporting transwell membrane minimized the amount of p(4VP)-MWCNT translocating to the basal chamber, seen trapped between the basolateral cell membrane and the membrane. Only 8% of AT2 cells internalized p(4VP)-MWCNT, accounting for 17% of applied p(4VP)-MWCNT), with transient effects on barrier function, which initially fell then returned to normal; there was no MWCNT basolateral translocation. The transport rate was MWCNT length modulated. The comparatively lower p(4VP)-MWCNT uptake by AT2 cells is proposed to reflect a primary barrier effect of type 2 cell secretions and the functional differences between the type 1 and type 2 alveolar epithelial cells.


Assuntos
Células Epiteliais , Pulmão/citologia , Nanotubos de Carbono , Alvéolos Pulmonares/citologia , Técnicas de Cultura de Células , Humanos , Mucosa Respiratória
5.
Biomaterials ; 55: 24-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934449

RESUMO

Multiwalled carbon nanotubes (MWCNTs) are now synthesized on a large scale, increasing the risk of occupational inhalation. However, little is known of the MWCNT-pulmonary surfactant (PS) interface and its effect on PS functionality. The Langmuir-Blodgett trough was used to evaluate the impact of MWCNTs on fundamental properties of PS lipids which influence PS function, i.e. compression resistance and maximum obtainable pressure. Changes were found to be MWCNT length-dependent. 'Short' MWCNTs (1.1 µm, SD = 0.61) penetrated the lipid film, reducing the maximum interfacial film pressure by 10 mN/m (14%) in dipalmitoylphosphatidylcholine (DPPC) and PS, at an interfacial MWCNT-PS lipid mass ratio range of 50:1 to 1:1. 'Long' commercial MWCNTs (2.1 µm, SD = 1.2) caused compression resistance at the same mass loadings. 'Very long' MWCNTs (35 µm, SD = 19) sequestered DPPC and were squeezed out of the DPPC film. High resolution transmission electron microscopy revealed that all MWCNT morphologies formed DPPC coronas with ordered arrangements. These results provide insight into how nanoparticle aspect ratio affects the interaction mechanisms with PS, in its near-native state at the air-water interface.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Lipídeos/química , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/química , Surfactantes Pulmonares/química , Animais , Força Compressiva , Microscopia de Força Atômica , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Tensoativos , Temperatura
6.
Chem Commun (Camb) ; 50(82): 12360-2, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25187313

RESUMO

In this work it has been established that 3D nanoflowers of WS2 synthesised by chemical vapour deposition are composed of few layer WS2 along the edges of the petals. An experimental study in order to understand the evolution of these nanostructures shows the nucleation and growth along with the compositional changes they undergo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA