Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791143

RESUMO

In all cell types, small EVs, very abundant extracellular vesicles, are generated and accumulated within MVB endocytic cisternae. Upon MVB fusion and exocytosis with the plasma membrane, the EVs are released to the extracellular space. In the central nervous system, the release of neuronal EVs was believed to occur only from the surface of the body and dendrites. About 15 years ago, MVB cisternae and EVs were shown to exist and function at synaptic boutons, the terminals' pre- and post-synaptic structures essential for canonical neurotransmitter release. Recent studies have revealed that synaptic EVs are peculiar in many respects and heterogeneous with respect to other neuronal EVs. The distribution of synaptic EVs and the effect of their specific molecules are found at critical sites of their distribution. The role of synaptic EVs could consist of the modulation of canonical neurotransmitter release or a distinct, non-canonical form of neurotransmission. Additional roles of synaptic EVs are still not completely known. In the future, additional investigations will clarify the role of synaptic EVs in pathology, concerning, for example, circuits, trans-synaptic transmission, diagnosis and the therapy of diseases.


Assuntos
Vesículas Extracelulares , Neurônios , Transdução de Sinais , Sinapses , Transmissão Sináptica , Humanos , Vesículas Extracelulares/metabolismo , Animais , Neurônios/metabolismo , Sinapses/metabolismo , Exocitose , Neurotransmissores/metabolismo , Vesículas Sinápticas/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397100

RESUMO

Autism spectrum disorder (ASD), affecting over 2% of the pre-school children population, includes an important fraction of the conditions accounting for the heterogeneity of autism. The disease was discovered 75 years ago, and the present review, based on critical evaluations of the recognized ASD studies from the beginning of 1990, has been further developed by the comparative analyses of the research and clinical reports, which have grown progressively in recent years up to late 2023. The tools necessary for the identification of the ASD disease and its related clinical pathologies are genetic and epigenetic mutations affected by the specific interaction with transcription factors and chromatin remodeling processes occurring within specific complexes of brain neurons. Most often, the ensuing effects induce the inhibition/excitation of synaptic structures sustained primarily, at dendritic fibers, by alterations of flat and spine response sites. These effects are relevant because synapses, established by specific interactions of neurons with glial cells, operate as early and key targets of ASD. The pathology of children is often suspected by parents and communities and then confirmed by ensuing experiences. The final diagnoses of children and mature patients are then completed by the combination of neuropsychological (cognitive) tests and electro-/magneto-encephalography studies developed in specialized centers. ASD comorbidities, induced by processes such as anxieties, depressions, hyperactivities, and sleep defects, interact with and reinforce other brain diseases, especially schizophrenia. Advanced therapies, prescribed to children and adult patients for the control of ASD symptoms and disease, are based on the combination of well-known brain drugs with classical tools of neurologic and psychiatric practice. Overall, this review reports and discusses the advanced knowledge about the biological and medical properties of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Encefalopatias , Humanos , Pré-Escolar , Criança , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Encéfalo , Neurônios
3.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239843

RESUMO

For many decades after their discovery, astrocytes, the abundant glial cells of the brain, were believed to work as a glue, supporting the structure and metabolic functions of neurons. A revolution that started over 30 years ago revealed many additional functions of these cells, including neurogenesis, gliosecretion, glutamate homeostasis, assembly and function of synapses, neuronal metabolism with energy production, and others. These properties have been confirmed, limited however, to proliferating astrocytes. During their aging or following severe brain stress lesions, proliferating astrocytes are converted into their no-longer-proliferating, senescent forms, similar in their morphology but profoundly modified in their functions. The changed specificity of senescent astrocytes is largely due to their altered gene expression. The ensuing effects include downregulation of many properties typical of proliferating astrocytes, and upregulation of many others, concerned with neuroinflammation, release of pro-inflammatory cytokines, dysfunction of synapses, etc., specific to their senescence program. The ensuing decrease in neuronal support and protection by astrocytes induces the development, in vulnerable brain regions, of neuronal toxicity together with cognitive decline. Similar changes, ultimately reinforced by astrocyte aging, are also induced by traumatic events and molecules involved in dynamic processes. Senescent astrocytes play critical roles in the development of many severe brain diseases. The first demonstration, obtained for Alzheimer's disease less than 10 years ago, contributed to the elimination of the previously predominant neuro-centric amyloid hypothesis. The initial astrocyte effects, operating a considerable time before the appearance of known Alzheimer's symptoms evolve with the severity of the disease up to their proliferation during the final outcome. Involvement of astrocytes in other neurodegenerative diseases and cancer is now intensely investigated.


Assuntos
Doença de Alzheimer , Astrócitos , Humanos , Astrócitos/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo
4.
Biomedicines ; 10(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36289858

RESUMO

During the last century, synapses have been intensely investigated as the most interesting sites of neuroscience development [...].

5.
Biomedicines ; 10(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36009405

RESUMO

Brain synapses are neuronal structures of the greatest interest. For a long time, however, the knowledge about them was variable, and interest was mostly focused on their pre-synaptic portions, especially neurotransmitter release from axon terminals. In the present review interest is focused on post-synapses, the structures receiving and converting pre-synaptic messages. Upon further modulation, such messages are transferred to dendritic fibers. Dendrites are profoundly different from axons; they are shorter and of variable thickness. Their post-synapses are of two types. Those called flat/intended/aspines, integrated into dendritic fibers, are very frequent in inhibitory neurons. The spines, small and stemming protrusions, connected to dendritic fibers by their necks, are present in almost all excitatory neurons. Several structures and functions including the post-synaptic densities and associated proteins, the nanoscale mechanisms of compartmentalization, the cytoskeletons of actin and microtubules, are analogous in the two post-synaptic forms. However other properties, such as plasticity and its functions of learning and memory, are largely distinct. Several properties of spines, including emersion from dendritic fibers, growth, change in shape and decreases in size up to disappearance, are specific. Spinal heads correspond to largely independent signaling compartments. They are motile, their local signaling is fast, however transport through their thin necks is slow. When single spines are activated separately, their dendritic effects are often lacking; when multiple spines are activated concomitantly, their effects take place. Defects of post-synaptic responses, especially those of spines, take place in various brain diseases. Here alterations affecting symptoms and future therapy are shown to occur in neurodegenerative diseases and autism spectrum disorders.

6.
Front Cell Dev Biol ; 10: 877344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756998

RESUMO

In addition to conventional protein secretion, dependent on the specific cleavage of signal sequences, proteins are secreted by other processes, all together called unconventional. Among the mechanisms operative in unconventional secretion, some are based on two families of extracellular vesicle (EVs), expressed by all types of cells: the exosomes (before secretion called ILVs) and ectosomes (average diameters ∼70 and ∼250 nm). The two types of EVs have been largely characterized by extensive studies. ILVs are assembled within endocytic vacuoles by inward budding of small membrane microdomains associated to cytosolic cargos including unconventional secretory proteins. The vacuoles containing ILVs are called multivesicular bodies (MVBs). Upon their possible molecular exchange with autophagosomes, MVBs undergo two alternative forms of fusion: 1. with lysosomes, followed by large digestion of their cargo molecules; and 2. with plasma membrane (called exocytosis), followed by extracellular diffusion of exosomes. The vesicles of the other type, the ectosomes, are differently assembled. Distinct plasma membrane rafts undergo rapid outward budding accompanied by accumulation of cytosolic/secretory cargo molecules, up to their sewing and pinching off. Both types of EV, released to the extracellular fluid in their complete forms including both membrane and cargo, start navigation for various times and distances, until their fusion with target cells. Release/navigation/fusion of EVs establish continuous tridimensional networks exchanging molecules, signals and information among cells. The proteins unconventionally secreted via EVs are a few hundreds. Some of them are functionally relevant (examples FADD, TNF, TACE), governing physiological processes and important diseases. Such proteins, at present intensely investigated, predict future discoveries and innovative developments, relevant for basic research and clinical practice.

7.
Biomedicines ; 10(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35052785

RESUMO

Upon its discovery, Alzheimer's, the neurodegenerative disease that affects many millions of patients in the world, remained without an effective therapy. The first drugs, made available near the end of last century, induced some effects, which remained only marginal. More promising effects are now present, induced by two approaches. Blockers of the enzyme BACE-1 induce, in neurons and glial cells, decreased levels of Aß, the key peptide of the Alzheimer's disease. If administered at early AD steps, the BACE-1 blockers preclude further development of the disease. However, they have no effect on established, irreversible lesions. The extracellular vesicles secreted by mesenchymal stem cells induce therapy effects analogous, but more convenient, than the effects of their original cells. After their specific fusion to target cells, the action of these vesicles depends on their ensuing release of cargo molecules, such as proteins and many miRNAs, active primarily on the cell cytoplasm. Operationally, these vesicles exhibit numerous advantages: they exclude, by their accurate selection, the heterogeneity of the original cells; exhibit molecular specificity due to their engineering and drug accumulation; and induce effective actions, mediated by variable concentrations of factors and molecules and by activation of signaling cascades. Their strength is reinforced by their combination with various factors and processes. The recent molecular and operations changes, induced especially by the stem cell target cells, result in encouraging and important improvement of the disease. Their further development is expected in the near future.

8.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054811

RESUMO

Stem cells, identified several decades ago, started to attract interest at the end of the nineties when families of mesenchymal stem cells (MSCs), concentrated in the stroma of most organs, were found to participate in the therapy of many diseases. In cancer, however, stem cells of high importance are specific to another family, the cancer stem cells (CSCs). This comprehensive review is focused on the role and the mechanisms of CSCs and of their specific extracellular vesicles (EVs), which are composed of both exosomes and ectosomes. Compared to non-stem (normal) cancer cells, CSCs exist in small populations that are preferentially distributed to the niches, such as minor specific tissue sites corresponding to the stroma of non-cancer tissues. At niches and marginal sites of other cancer masses, the tissue exhibits peculiar properties that are typical of the tumor microenvironment (TME) of cancers. The extracellular matrix (ECM) includes components different from non-cancer tissues. CSCs and their EVs, in addition to effects analogous to those of MSCs/EVs, participate in processes of key importance, specific to cancer: generation of distinct cell subtypes, proliferation, differentiation, progression, formation of metastases, immune and therapy resistance, cancer relapse. Many of these, and other, effects require CSC cooperation with surrounding cells, especially MSCs. Filtered non-cancer cells, especially macrophages and fibroblasts, contribute to collaborative cancer transition/integration processes. Therapy developments are mentioned as ongoing preclinical initiatives. The preliminary state of clinical medicine is presented in terms of both industrial development and future treatments. The latter will be administered to specific patients together with known drugs, with the aim of eradicating their tumor growth and metastases.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
9.
Biomedicines ; 9(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200818

RESUMO

Mesenchymal stem cells (MSCs), the cells distributed in the stromas of the body, are known for various properties including replication, the potential of various differentiations, the immune-related processes including inflammation. About two decades ago, these cells were shown to play relevant roles in the therapy of numerous diseases, dependent on their immune regulation and their release of cytokines and growth factors, with ensuing activation of favorable enzymes and processes. Such discovery induced great increase of their investigation. Soon thereafter, however, it became clear that therapeutic actions of MSCs are risky, accompanied by serious drawbacks and defects. MSC therapy has been therefore reduced to a few diseases, replaced for the others by their extracellular vesicles, the MSC-EVs. The latter vesicles recapitulate most therapeutic actions of MSCs, with equal or even better efficacies and without the serious drawbacks of the parent cells. In addition, MSC-EVs are characterized by many advantages, among which are their heterogeneities dependent on the stromas of origin, the alleviation of cell aging, the regulation of immune responses and inflammation. Here we illustrate the MSC-EV therapeutic effects, largely mediated by specific miRNAs, covering various diseases and pathological processes occurring in the bones, heart and vessels, kidney, and brain. MSC-EVs operate also on the development of cancers and on COVID-19, where they alleviate the organ lesions induced by the virus. Therapy by MSC-EVs can be improved by combination of their innate potential to engineering processes inducing precise targeting and transfer of drugs. The unique properties of MSC-EVs explain their intense studies, carried out with extraordinary success. Although not yet developed to clinical practice, the perspectives for proximal future are encouraging.

10.
Biomedicines ; 9(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806691

RESUMO

Biomarkers are molecules that are variable in their origin, nature, and mechanism of action; they are of great relevance in biology and also in medicine because of their specific connection with a single or several diseases. Biomarkers are of two types, which in some cases are operative with each other. Fluid biomarkers, started around 2000, are generated in fluid from specific proteins/peptides and miRNAs accumulated within two extracellular fluids, either the central spinal fluid or blood plasma. The switch of these proteins/peptides and miRNAs, from free to segregated within extracellular vesicles, has induced certain advantages including higher levels within fluids and lower operative expenses. Imaging biomarkers, started around 2004, are identified in vivo upon their binding by radiolabeled molecules subsequently revealed in the brain by positron emission tomography and/or other imaging techniques. A positive point for the latter approach is the quantitation of results, but expenses are much higher. At present, both types of biomarker are being extensively employed to study Alzheimer's and other neurodegenerative diseases, investigated from the presymptomatic to mature stages. In conclusion, biomarkers have revolutionized scientific and medical research and practice. Diagnosis, which is often inadequate when based on medical criteria only, has been recently improved by the multiplicity and specificity of biomarkers. Analogous results have been obtained for prognosis. In contrast, improvement of therapy has been limited or fully absent, especially for Alzheimer's in which progress has been inadequate. An urgent need at hand is therefore the progress of a new drug trial design together with patient management in clinical practice.

11.
J Exp Pathol (Wilmington) ; 2(1): 47-52, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786534

RESUMO

This is a Commentary of a review about extracellular vesicles of immune cells published two years ago in Clinical and Experimental Immunology, a prestigious journal of the field. The aim is to establish whether, and to what extent, results in scientific area of the review have been extended and strengthened by innovative findings of considerable interest. The analysis of the recently published results has revealed that in various areas of the review developments have occurred. However, innovative findings have been only about the extracellular vesicles secreted by mesenchymal stem cells, usually indicated as MSC-EVs. Based on these findings, the Commentary has been focused on recent MSC-EVs findings presented in three Sections dealing with 1. recently appeared, relevant functions of the latter vesicles; 2. therapeutic processes developed according well known criteria, however innovative in many respects; and 3. protection of COVID-19 disease patients from organ lesions induced by the specific virus, SARS-CoV-2, during the disease. As everybody knows, the COVID-19 pandemic started at the end of 2019, thus after the publication of the aforementioned review. Data of Section 3 are therefore innovative, of great potential interest also at the clinical level, applied by translational medicine to various organs, from lung to brain, heart, kidney, immune and other cells. In view of its relevance, the author expects that research and medical use of MSC-EV, active at present, will be further developed, acquiring additional relevance in the near future.

12.
Mol Biomed ; 2(1): 18, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006460

RESUMO

Last century, neurons and glial cells were mostly believed to play distinct functions, relevant for the brain. Progressively, however, it became clear that neurons, astrocytes and microglia co-operate intensely with each other by release/binding of signaling factors, direct surface binding and generation/release of extracellular vesicles, the exosomes and ectosomes, called together vesicles in this abstract. The present review is focused on these vesicles, fundamental in various brain diseases. Their properties are extraordinary. The specificity of their membrane governs their fusion with distinct target cells, variable depending on the state and specificity of their cells of origin and target. Result of vesicle fusion is the discharge of their cargos into the cytoplasm of target cells. Cargos are composed of critical molecules, from proteins (various nature and function) to nucleotides (especially miRNAs), playing critical roles in immune and neurodegenerative diseases. Among immune diseases is multiple sclerosis, affected by extensive dysregulation of co-trafficking neural and glial vesicles, with distinct miRNAs inducing severe or reducing effects. The vesicle-dependent differences between progressive and relapsing-remitting forms of the disease are relevant for clinical developments. In Alzheimer's disease the vesicles can affect the brain by changing their generation and inducing co-release of effective proteins, such Aß and tau, from neurons and astrocytes. Specific miRNAs can delay the long-term development of the disease. Upon their traffic through the blood-brainbarrier, vesicles of various origin reach fluids where they are essential for the identification of biomarkers, important for diagnostic and therapeutic innovations, critical for the future of many brain patients.

13.
Biomedicines ; 8(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036256

RESUMO

Astrocytes, the most numerous glial cells in the brains of humans and other mammalian animals, have been studied since their discovery over 100 years ago. For many decades, however, astrocytes were believed to operate as a glue, providing only mechanical and metabolic support to adjacent neurons. Starting from a "revolution" initiated about 25 years ago, numerous astrocyte functions have been reconsidered, some previously unknown, others attributed to neurons or other cell types. The knowledge of astrocytes has been continuously growing during the last few years. Based on these considerations, in the present review, different from single or general overviews, focused on six astrocyte functions, chosen due in their relevance in both brain physiology and pathology. Astrocytes, previously believed to be homogeneous, are now recognized to be heterogeneous, composed by types distinct in structure, distribution, and function; their cooperation with microglia is known to govern local neuroinflammation and brain restoration upon traumatic injuries; and astrocyte senescence is relevant for the development of both health and diseases. Knowledge regarding the role of astrocytes in tauopathies and Alzheimer's disease has grow considerably. The multiple properties emphasized here, relevant for the present state of astrocytes, will be further developed by ongoing and future studies.

14.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784968

RESUMO

The expression of genes is the first process governing the molecular and structural specificity of the various types of cells, initiated by their transcription into the corresponding pre-mRNA [...].


Assuntos
Neurônios Dopaminérgicos/metabolismo , Expressão Gênica , Neurogênese/genética , Animais , Encéfalo/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Splicing de RNA , Transcrição Gênica
15.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486302

RESUMO

NOVA1 and NOVA2, the two members of the NOVA family of alternative splicing factors, bind YCAY clusters of pre-mRNAs and assemble spliceosomes to induce the maintenance/removal of introns and exons, thus governing the development of mRNAs. Members of other splicing families operate analogously. Activity of NOVAs accounts for up to 700 alternative splicing events per cell, taking place both in the nucleus (co-transcription of mRNAs) and in the cytoplasm. Brain neurons express high levels of NOVAs, with NOVA1 predominant in cerebellum and spinal cord, NOVA2 in the cortex. Among brain physiological processes NOVAs play critical roles in axon pathfinding and spreading, structure and function of synapses, as well as the regulation of surface receptors and voltage-gated channels. In pathology, NOVAs contribute to neurodegenerative diseases and epilepsy. In vessel endothelial cells, NOVA2 is essential for angiogenesis, while in adipocytes, NOVA1 contributes to regulation of thermogenesis and obesity. In many cancers NOVA1 and also NOVA2, by interacting with specific miRNAs and by additional mechanisms, activate oncogenic roles promoting cell proliferation, colony formation, migration, and invasion. In conclusion, NOVAs regulate cell functions of physiological and pathological nature. Single cell identification and distinction, and new therapies addressed to NOVA targets might be developed in the near future.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adipócitos/citologia , Mapeamento Encefálico , Movimento Celular , Proliferação de Células , Células Endoteliais/metabolismo , Humanos , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/terapia , Neovascularização Patológica , Proteínas do Tecido Nervoso/genética , Antígeno Neuro-Oncológico Ventral , Neurônios/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Proteínas de Ligação a RNA/genética , Spliceossomos/metabolismo
16.
Pharmacol Res ; 146: 104316, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31260730

RESUMO

Alzheimer's is the neurodegenerative disease affecting the largest number of patients in the world. In spite of the intense research of the last decades, progress about its knowledge and therapy was limited. In particular, various cytotoxic processes remained debated, while the few drugs approved for therapy were of only marginal relevance. Recent studies have identified key aspects of the disease, such as the mechanisms governing the development of pathology. In order to operate the Aß peptide, known as the key factor, requires a complex assembled by its high affinity binding to PrPc, a cell surface prion protein, and mGluR5, a metabotropic glutamate receptor. Aß and its associates bind also phosphorylated tau transferred to the extracellular space, with final activation of intracellular cytotoxic signals. Pathology is further affected by factors (including genes, receptors and their agonists) and by glial cells governing (via vesicles, cytokines and enzymes) cell immunology, inflammation and oxidative stress. Concomitant to pathology studies, strong attempts have been made for the development of new, effective therapies. Critical for this are biomarkers, by which Alzheimer's patients are recognized even before appearance of their symptoms. The question was whether patients take advantage from drugs not yet approved. The latter, first identified in mice, were found effective also in men, however only before appearance or at early stage of the disease. In other words, the drugs not yet approved induce effective protection of patients still healthy or in a preliminary stage of the disease. In contrast, developed Alzheimer's disease is practically irreversible.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Fosforilação/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo
17.
J Mol Cell Biol ; 11(9): 736-746, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30605539

RESUMO

The fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.


Assuntos
Exocitose/fisiologia , Animais , Transporte Biológico , Biomarcadores , Membrana Celular/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Complexo de Golgi/metabolismo , Humanos , Fusão de Membrana , Vesículas Secretórias/metabolismo
18.
Int J Mol Sci ; 21(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905747

RESUMO

RE-1 silencing transcription factor (REST) (known also as NRSF) is a well-known transcription repressor whose strong decrease induces the distinction of neurons with respect to the other cells. Such distinction depends on the marked increased/decreased expression of specific genes, accompanied by parallel changes of the corresponding proteins. Many properties of REST had been identified in the past. Here we report those identified during the last 5 years. Among physiological discoveries are hundreds of genes governed directly/indirectly by REST, the mechanisms of its neuron/fibroblast conversions, and the cooperations with numerous distinct factors induced at the epigenetic level and essential for REST specific functions. New effects induced in neurons during brain diseases depend on the localization of REST, in the nucleus, where functions and toxicity occur, and in the cytoplasm. The effects of REST, including cell aggression or protection, are variable in neurodegenerative diseases in view of the distinct mechanisms of their pathology. Moreover, cooperations are among the mechanisms that govern the severity of brain cancers, glioblastomas, and medulloblastomas. Interestingly, the role in cancers is relevant also for therapeutic perspectives affecting the REST cooperations. In conclusion, part of the new REST knowledge in physiology and pathology appears promising for future developments in research and brain diseases.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Animais , Encéfalo/patologia , Diferenciação Celular/genética , Epigênese Genética , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/terapia , Regulação da Expressão Gênica/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética , Neurônios/fisiologia , Proteínas Repressoras/genética
19.
Curr Biol ; 28(8): R435-R444, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29689228

RESUMO

Exosomes and ectosomes, two distinct types of extracellular vesicles generated by all types of cell, play key roles in intercellular communication. The formation of these vesicles depends on local microdomains assembled in endocytic membranes for exosomes and in the plasma membrane for ectosomes. These microdomains govern the accumulation of proteins and various types of RNA associated with their cytosolic surface, followed by membrane budding inward for exosome precursors and outward for ectosomes. A fraction of endocytic cisternae filled with vesicles - multivesicular bodies - are later destined to undergo regulated exocytosis, leading to the extracellular release of exosomes. In contrast, the regulated release of ectosomes follows promptly after their generation. These two types of vesicle differ in size - 50-150 nm for exosomes and 100-500 nm for ectosomes - and in the mechanisms of assembly, composition, and regulation of release, albeit only partially. For both exosomes and ectosomes, the surface and luminal cargoes are heterogeneous when comparing vesicles released by different cell types or by single cells in different functional states. Upon release, the two types of vesicle navigate through extracellular fluid for varying times and distances. Subsequently, they interact with recognized target cells and undergo fusion with endocytic or plasma membranes, followed by integration of vesicle membranes into their fusion membranes and discharge of luminal cargoes into the cytosol, resulting in changes to cellular physiology. After fusion, exosome/ectosome components can be reassembled in new vesicles that are then recycled to other cells, activating effector networks. Extracellular vesicles also play critical roles in brain and heart diseases and in cancer, and are useful as biomarkers and in the development of innovative therapeutic approaches.


Assuntos
Comunicação Celular/fisiologia , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Animais , Membrana Celular/metabolismo , Exocitose , Exossomos/fisiologia , Vesículas Extracelulares/fisiologia , Humanos , Fusão de Membrana/fisiologia , Corpos Multivesiculares/fisiologia , Transdução de Sinais/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-28884193

RESUMO

In the last few years, exciting reports have emerged regarding the role of the two types of neurotrophin receptors, p75NTR and Trks, not only in neurons, where they were discovered, but also in non-neural cells and, especially, in numerous cancers, including breast, lung, colon-rectum, pancreas, prostate, glioblastoma, neuroblastoma, myeloma, and lymphoid tumors. Traditionally, p75NTR, activated by all neurotrophins and their precursors, is an inhibitor. In various cancers, however, activated p75NTR induces variable effects, from inhibition to stimulation of cell proliferation, dependent on their direct or coordinate/indirect mechanism(s) of action. TrkA, TrkB, and TrkC, activated by distinct neurotrophins, are high affinity stimulatory receptors. In cancers, activation of Trks, especially of TrkB, are stimulators of cell proliferation, aggressiveness, and metastases. In rare cancers, these processes are due not to receptor activation but to fusion or mutation of the encoding genes. A considerable panel of anti-Trk drugs, developed recently, has been investigated both in vitro and in living mice for their effects on cancer cells. Many such drugs protect from cancers by preventing cell proliferation and inducing apoptosis. At present, these drugs are under control by trials, to promote introduction in human therapy. Moreover, anti-Trk drugs have been employed also in combination with classical chemotherapeutic drugs. So far, studies in mice have been positive. The chemotherapeutic/anti-receptor combinations exhibited in fact increased potency and down-regulation of resistance, with no increase of side effects.


Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas do Tecido Nervoso/metabolismo , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Apoptose , Proliferação de Células , Ensaios Clínicos como Assunto , Humanos , Camundongos , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA