Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 94, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622708

RESUMO

Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.


Assuntos
Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos
2.
Nucleic Acids Res ; 52(6): 2821-2835, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38348970

RESUMO

A key attribute of some long noncoding RNAs (lncRNAs) is their ability to regulate expression of neighbouring genes in cis. However, such 'cis-lncRNAs' are presently defined using ad hoc criteria that, we show, are prone to false-positive predictions. The resulting lack of cis-lncRNA catalogues hinders our understanding of their extent, characteristics and mechanisms. Here, we introduce TransCistor, a framework for defining and identifying cis-lncRNAs based on enrichment of targets amongst proximal genes. TransCistor's simple and conservative statistical models are compatible with functionally defined target gene maps generated by existing and future technologies. Using transcriptome-wide perturbation experiments for 268 human and 134 mouse lncRNAs, we provide the first large-scale survey of cis-lncRNAs. Known cis-lncRNAs are correctly identified, including XIST, LINC00240 and UMLILO, and predictions are consistent across analysis methods, perturbation types and independent experiments. We detect cis-activity in a minority of lncRNAs, primarily involving activators over repressors. Cis-lncRNAs are detected by both RNA interference and antisense oligonucleotide perturbations. Mechanistically, cis-lncRNA transcripts are observed to physically associate with their target genes and are weakly enriched with enhancer elements. In summary, TransCistor establishes a quantitative foundation for cis-lncRNAs, opening a path to elucidating their molecular mechanisms and biological significance.


Assuntos
Biologia Computacional , Técnicas Genéticas , RNA Longo não Codificante , Animais , Humanos , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/isolamento & purificação , Fatores de Transcrição/genética , Transcriptoma , Software/normas , Biologia Computacional/métodos
3.
Cell Genom ; 3(7): 100330, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37492106

RESUMO

High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.

4.
Nat Commun ; 14(1): 3866, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391481

RESUMO

Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , RNA Longo não Codificante , Animais , Doença pelo Vírus Ebola/genética , RNA Longo não Codificante/genética , Macaca mulatta , Ebolavirus/genética , Internalização do Vírus
5.
Cell Genom ; 3(1): 100244, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36777183

RESUMO

Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.

6.
Clin Cancer Res ; 29(2): 432-445, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36374558

RESUMO

PURPOSE: Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%-50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. EXPERIMENTAL DESIGN: We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. RESULTS: This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. CONCLUSIONS: Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Avaliação Pré-Clínica de Medicamentos , Xenoenxertos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética
7.
Cell Genom ; 3(12): 100440, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38169842

RESUMO

Ebola virus (EBOV) causes Ebola virus disease (EVD), marked by severe hemorrhagic fever; however, the mechanisms underlying the disease remain unclear. To assess the molecular basis of EVD across time, we performed RNA sequencing on 17 tissues from a natural history study of 21 rhesus monkeys, developing new methods to characterize host-pathogen dynamics. We identified alterations in host gene expression with previously unknown tissue-specific changes, including downregulation of genes related to tissue connectivity. EBOV was widely disseminated throughout the body; using a new, broadly applicable deconvolution method, we found that viral load correlated with increased monocyte presence. Patterns of viral variation between tissues differentiated primary infections from compartmentalized infections, and several variants impacted viral fitness in a EBOV/Kikwit minigenome system, suggesting that functionally significant variants can emerge during early infection. This comprehensive portrait of host-pathogen dynamics in EVD illuminates new features of pathogenesis and establishes resources to study other emerging pathogens.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Febres Hemorrágicas Virais , Animais , Doença pelo Vírus Ebola/patologia , Macaca mulatta , Ebolavirus/genética
8.
Commun Biol ; 5(1): 565, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681050

RESUMO

The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.


Assuntos
Envelhecimento , Telômero , Envelhecimento/genética , Epigênese Genética , Feminino , Humanos , Estilo de Vida , Pais , Gravidez , Telômero/genética
9.
NPJ Genom Med ; 7(1): 18, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288587

RESUMO

Cardiomyopathy (CMP) is a heritable disorder. Over 50% of cases are gene-elusive on clinical gene panel testing. The contribution of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patients and 1953 independent replication genomes and exomes. We searched for protein-coding variants, and non-coding variants predicted to affect the function or expression of genes. Thirty-nine percent of cases harbored pathogenic coding variants in known CMP genes, and 5% harbored high-risk loss-of-function (LoF) variants in additional candidate CMP genes. Fifteen percent harbored high-risk regulatory variants in promoters and enhancers of CMP genes (odds ratio 2.25, p = 6.70 × 10-7 versus controls). Genes involved in α-dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) were most highly enriched for regulatory variants (odds ratio 6.7-58.1). Functional effects were confirmed in patient myocardium and reporter assays in human cardiomyocytes, and in zebrafish CRISPR knockouts. We provide strong evidence for the genomic contribution of functionally active variants in new genes and in regulatory elements of known CMP genes to early onset CMP.

10.
Cell ; 183(5): 1383-1401.e19, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33159858

RESUMO

Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno/genética , Análise de Célula Única , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Efeito Espectador , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Ebolavirus/genética , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferons/genética , Interferons/metabolismo , Macaca mulatta , Macrófagos/metabolismo , Monócitos/metabolismo , Mielopoese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcriptoma/genética
11.
Genome Biol ; 21(1): 210, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819422

RESUMO

BACKGROUND: Gene expression differences between species are driven by both cis and trans effects. Whereas cis effects are caused by genetic variants located on the same DNA molecule as the target gene, trans effects are due to genetic variants that affect diffusible elements. Previous studies have mostly assessed the impact of cis and trans effects at the gene level. However, how cis and trans effects differentially impact regulatory elements such as enhancers and promoters remains poorly understood. Here, we use massively parallel reporter assays to directly measure the transcriptional outputs of thousands of individual regulatory elements in embryonic stem cells and measure cis and trans effects between human and mouse. RESULTS: Our approach reveals that cis effects are widespread across transcribed regulatory elements, and the strongest cis effects are associated with the disruption of motifs recognized by strong transcriptional activators. Conversely, we find that trans effects are rare but stronger in enhancers than promoters and are associated with a subset of transcription factors that are differentially expressed between human and mouse. While we find that cis-trans compensation is common within promoters, we do not see evidence of widespread cis-trans compensation at enhancers. Cis-trans compensation is inversely correlated with enhancer redundancy, suggesting that such compensation may often occur across multiple enhancers. CONCLUSIONS: Our results highlight differences in the mode of evolution between promoters and enhancers in complex mammalian genomes and indicate that studying the evolution of individual regulatory elements is pivotal to understand the tempo and mode of gene expression evolution.


Assuntos
Elementos Facilitadores Genéticos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas , Animais , Sequência Conservada , Genes Reporter , Humanos , Camundongos , Elementos Reguladores de Transcrição , Fatores de Transcrição
12.
Pharmaceutics ; 11(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374879

RESUMO

Amphotericin B possesses high activity against Candida spp. with low risk of resistance. However, Amphotericin B's high molecular weight compared to other antifungal drugs, such as miconazole and clotrimazole, and poor water solubility hampers its efficacy at the physiological conditions of the oropharyngeal cavity (saliva pH, limited volume for dissolution) and thereby limits its clinical use in oropharyngeal candidiasis. We have prepared fast-dissolving orodispersible films with high loading (1% w/w) using solvent casting that enables amphotericin B to remain solubilised in saliva in equilibrium between the monomeric and dimeric states, and able to produce a local antifungal effect. Optimisation of the amphotericin B-loaded orodispersible films was achieved by quality by design studies combining dextran and/or maltodextrin as dextrose-derived-polymer film formers with cellulose-derived film formers (hydroxypropylmethyl/hydroxypropyl cellulose in a 1:4 weight ratio), sorbitol for taste masking, microcrystalline cellulose (Avicel 200) or microcrystalline cellulose-carboxymethylcellulose sodium (Avicel CL-611) for enhancing the mechanical strength of the film, and polyethylene glycol 400 and glycerol (1:1 w/w) as plasticizers. The optimised amphotericin B orodispersible films (containing 1% AmB, 25% dextran, 25% maltodextrin, 5% sorbitol, 10% Avicel 200, 10% polyethylene glycol 400, 10% glycerol, 3% hydroxypropylmethyl cellulose acetate succinate, 12% hydroxypropyl cellulose) possessed a fast disintegration time (60 ± 3 s), quick release in artificial saliva (>80% in 10 min), high burst strength (2190 mN mm) and high efficacy against several Candida spp. (C. albicans, C. parapsilosis and C. krusei) (>15 mm inhibition halo). Amphotericin B orodispersible films are stable for two weeks at room temperature (25 °C) and up to 1 year in the fridge. Although further toxicological and in vivo efficacy studies are required, this novel Amphotericin B orodispersible films is a promising, physicochemically stable formulation with potential wide application in clinical practice, especially for immunocompromised patients suffering from oropharyngeal candidiasis.

13.
Genome Res ; 29(3): 344-355, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30683753

RESUMO

Transcription initiates at both coding and noncoding genomic elements, including mRNA and long noncoding RNA (lncRNA) core promoters and enhancer RNAs (eRNAs). However, each class has a different expression profile with lncRNAs and eRNAs being the most tissue specific. How these complex differences in expression profiles and tissue specificities are encoded in a single DNA sequence remains unresolved. Here, we address this question using computational approaches and massively parallel reporter assays (MPRA) surveying hundreds of promoters and enhancers. We find that both divergent lncRNA and mRNA core promoters have higher capacities to drive transcription than nondivergent lncRNA and mRNA core promoters, respectively. Conversely, intergenic lncRNAs (lincRNAs) and eRNAs have lower capacities to drive transcription and are more tissue specific than divergent genes. This higher tissue specificity is strongly associated with having less complex transcription factor (TF) motif profiles at the core promoter. We experimentally validated these findings by testing both engineered single-nucleotide deletions and human single-nucleotide polymorphisms (SNPs) in MPRA. In both cases, we observe that single nucleotides associated with many motifs are important drivers of promoter activity. Thus, we suggest that high TF motif density serves as a robust mechanism to increase promoter activity at the expense of tissue specificity. Moreover, we find that 22% of common SNPs in core promoter regions have significant regulatory effects. Collectively, our findings show that high TF motif density provides redundancy and increases promoter activity at the expense of tissue specificity, suggesting that specificity of expression may be regulated by simplicity of motif usage.


Assuntos
Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Genoma Humano , Humanos , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único
14.
Nat Struct Mol Biol ; 25(2): 176-184, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29343869

RESUMO

Imaging and chromatin capture techniques have provided important insights into our understanding of nuclear organization. A limitation of these techniques is the inability to resolve allele-specific spatiotemporal properties of genomic loci in living cells. Here, we describe an allele-specific CRISPR live-cell DNA imaging technique (SNP-CLING) to provide the first comprehensive insights into allelic positioning across space and time in mouse embryonic stem cells and fibroblasts. With 3D imaging, we studied alleles on different chromosomes in relation to one another and relative to nuclear substructures such as the nucleolus. We find that alleles maintain similar positions relative to each other and the nucleolus; however, loci occupy unique positions. To monitor spatiotemporal dynamics by SNP-CLING, we performed 4D imaging and determined that alleles are either stably positioned or fluctuating during cell state transitions, such as apoptosis. SNP-CLING is a universally applicable technique that enables the dissection of allele-specific spatiotemporal genome organization in live cells.


Assuntos
Alelos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Polimorfismo de Nucleotídeo Único , Animais , Apoptose , Nucléolo Celular/metabolismo , Condrócitos/citologia , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Microscopia Confocal , Células-Tronco Embrionárias Murinas/citologia
15.
Science ; 358(6366): 1027-1032, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170230

RESUMO

To better understand the molecular and cellular differences in brain organization between human and nonhuman primates, we performed transcriptome sequencing of 16 regions of adult human, chimpanzee, and macaque brains. Integration with human single-cell transcriptomic data revealed global, regional, and cell-type-specific species expression differences in genes representing distinct functional categories. We validated and further characterized the human specificity of genes enriched in distinct cell types through histological and functional analyses, including rare subpallial-derived interneurons expressing dopamine biosynthesis genes enriched in the human striatum and absent in the nonhuman African ape neocortex. Our integrated analysis of the generated data revealed diverse molecular and cellular features of the phylogenetic reorganization of the human brain across multiple levels, with relevance for brain function and disease.


Assuntos
Macaca/genética , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Vias Neurais/metabolismo , Pan troglodytes/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Humanos , Interneurônios/metabolismo , Filogenia , Especificidade da Espécie
16.
Genome Res ; 27(1): 27-37, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927715

RESUMO

While long intergenic noncoding RNAs (lincRNAs) and mRNAs share similar biogenesis pathways, these transcript classes differ in many regards. LincRNAs are less evolutionarily conserved, less abundant, and more tissue-specific, suggesting that their pre- and post-transcriptional regulation is different from that of mRNAs. Here, we perform an in-depth characterization of the features that contribute to lincRNA regulation in multiple human cell lines. We find that lincRNA promoters are depleted of transcription factor (TF) binding sites, yet enriched for some specific factors such as GATA and FOS relative to mRNA promoters. Surprisingly, we find that H3K9me3-a histone modification typically associated with transcriptional repression-is more enriched at the promoters of active lincRNA loci than at those of active mRNAs. Moreover, H3K9me3-marked lincRNA genes are more tissue-specific. The most discriminant differences between lincRNAs and mRNAs involve splicing. LincRNAs are less efficiently spliced, which cannot be explained by differences in U1 binding or the density of exonic splicing enhancers but may be partially attributed to lower U2AF65 binding and weaker splicing-related motifs. Conversely, the stability of lincRNAs and mRNAs is similar, differing only with regard to the location of stabilizing protein binding sites. Finally, we find that certain transcriptional properties are correlated with higher evolutionary conservation in both DNA and RNA motifs and are enriched in lincRNAs that have been functionally characterized.


Assuntos
Cromatina/genética , Evolução Molecular , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Sítios de Ligação , Sequência Conservada/genética , Éxons/genética , Regulação da Expressão Gênica/genética , Humanos , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Splicing de RNA/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Fator de Processamento U2AF/genética
17.
BMC Genomics ; 17: 707, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27595844

RESUMO

BACKGROUND: Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. RESULTS: Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. CONCLUSIONS: Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/imunologia , Imunidade Inata , Leucócitos Mononucleares/imunologia , Animais , Ebolavirus/patogenicidade , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Leucócitos Mononucleares/metabolismo , Macaca/virologia , Camundongos , Análise de Sequência de RNA/métodos , Replicação Viral
18.
Mol Cell ; 62(5): 657-64, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259198

RESUMO

There is growing evidence that transcription and nuclear organization are tightly linked. Yet, whether transcription of thousands of long noncoding RNAs (lncRNAs) could play a role in this packaging process remains elusive. Although some lncRNAs have been found to have clear roles in nuclear architecture (e.g., FIRRE, NEAT1, XIST, and others), the vast majority remain poorly understood. In this Perspective, we highlight how the act of transcription can affect nuclear architecture. We synthesize several recent findings into a proposed model where the transcription of lncRNAs can serve as guide-posts for shaping genome organization. This model is similar to the game "cat's cradle," where the shape of a string is successively changed by opening up new sites for finger placement. Analogously, transcription of lncRNAs could serve as "grip holds" for nuclear proteins to pull the genome into new positions. This model could explain general lncRNA properties such as low abundance and tissue specificity. Overall, we propose a general framework for how the act of lncRNA transcription could play a role in organizing the 3D genome.


Assuntos
Núcleo Celular/metabolismo , Genoma Humano , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/ultraestrutura , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Modelos Genéticos , Proteínas Nucleares/biossíntese , RNA Longo não Codificante/biossíntese , RNA Mensageiro/biossíntese
19.
PLoS One ; 11(4): e0154194, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27105073

RESUMO

microRNAs are crucial post-transcriptional regulators of gene expression involved in a wide range of biological processes. Although microRNAs are highly conserved among species, the functional implications of existing lineage-specific changes and their role in determining differences between humans and other great apes have not been specifically addressed. We analyzed the recent evolutionary history of 1,595 human microRNAs by looking at their intra- and inter-species variation in great apes using high-coverage sequenced genomes of 82 individuals including gorillas, orangutans, bonobos, chimpanzees and humans. We explored the strength of purifying selection among microRNA regions and found that the seed and mature regions are under similar and stronger constraint than the precursor region. We further constructed a comprehensive catalogue of microRNA species-specific nucleotide substitutions among great apes and, for the first time, investigated the biological relevance that human-specific changes in microRNAs may have had in great ape evolution. Expression and functional analyses of four microRNAs (miR-299-3p, miR-503-3p, miR-508-3p and miR-541-3p) revealed that lineage-specific nucleotide substitutions and changes in the length of these microRNAs alter their expression as well as the repertoires of target genes and regulatory networks. We suggest that the studied molecular changes could have modified crucial microRNA functions shaping phenotypes that, ultimately, became human-specific. Our work provides a frame to study the impact that regulatory changes may have in the recent evolution of our species.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Variação Genética , Hominidae/genética , MicroRNAs/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Análise por Conglomerados , Evolução Molecular , Redes Reguladoras de Genes , Gorilla gorilla/genética , Humanos , MicroRNAs/química , MicroRNAs/classificação , Conformação de Ácido Nucleico , Pan paniscus/genética , Pan troglodytes/genética , Pongo/genética , Análise de Componente Principal , Especificidade da Espécie
20.
Science ; 348(6235): 660-5, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25954002

RESUMO

Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes­which is most clearly seen in blood­though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.


Assuntos
Regulação da Expressão Gênica , Genoma Humano/genética , Transcriptoma , Processamento Alternativo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Especificidade de Órgãos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA