Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Biomacromolecules ; 25(1): 258-271, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38110299

RESUMO

Protein hydrogels represent an important and growing biomaterial for a multitude of applications, including diagnostics and drug delivery. We have previously explored the ability to engineer the thermoresponsive supramolecular assembly of coiled-coil proteins into hydrogels with varying gelation properties, where we have defined important parameters in the coiled-coil hydrogel design. Using Rosetta energy scores and Poisson-Boltzmann electrostatic energies, we iterate a computational design strategy to predict the gelation of coiled-coil proteins while simultaneously exploring five new coiled-coil protein hydrogel sequences. Provided this library, we explore the impact of in silico energies on structure and gelation kinetics, where we also reveal a range of blue autofluorescence that enables hydrogel disassembly and recovery. As a result of this library, we identify the new coiled-coil hydrogel sequence, Q5, capable of gelation within 24 h at 4 °C, a more than 2-fold increase over that of our previous iteration Q2. The fast gelation time of Q5 enables the assessment of structural transition in real time using small-angle X-ray scattering (SAXS) that is correlated to coarse-grained and atomistic molecular dynamics simulations revealing the supramolecular assembling behavior of coiled-coils toward nanofiber assembly and gelation. This work represents the first system of hydrogels with predictable self-assembly, autofluorescent capability, and a molecular model of coiled-coil fiber formation.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas/química , Hidrogéis
3.
J Pharm Sci ; 112(12): 2991-3004, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37751805

RESUMO

The aseptic filling of drug products is carried out in pharmaceutical isolators that have been sterilized. A commonly used method for achieving a high level of sterility assurance is vaporized hydrogen peroxide (VHP) sterilization, which is favorable to other methods, such as ethylene oxide sterilization, due to its low cycle times and nontoxic residuals. While VHP cycles are often employed to create a sterile environment within an isolator, they can leave residual levels of hydrogen peroxide behind that can enter the product during fill-finish operations. Due to the oxidizing potential of hydrogen peroxide and the multiple possible sources of uptake along filling lines, the extent of the potential impact on product quality needs to be understood during pharmaceutical development. Herein, different factors affecting hydrogen peroxide uptake, points of entry along the filling line, and possible impacts on product quality are reviewed.


Assuntos
Peróxido de Hidrogênio , Esterilização , Esterilização/métodos
4.
Biomacromolecules ; 23(11): 4851-4859, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227640

RESUMO

The ability to engineer a solvent-exposed surface of self-assembling coiled coils allows one to achieve a higher-order hierarchical assembly such as nano- or microfibers. Currently, these materials are being developed for a range of biomedical applications, including drug delivery systems; however, ways to mechanistically optimize the coiled-coil structure for drug binding are yet to be explored. Our laboratory has previously leveraged the functional properties of the naturally occurring cartilage oligomeric matrix protein coiled coil (C), not only for its favorable motif but also for the presence of a hydrophobic pore to allow for small-molecule binding. This includes the development of Q, a rationally designed pentameric coiled coil derived from C. Here, we present a small library of protein microfibers derived from the parent sequences of C and Q bearing various electrostatic potentials with the aim to investigate the influence of higher-order assembly and encapsulation of candidate small molecule, curcumin. The supramolecular fiber size appears to be well-controlled by sequence-imbued electrostatic surface potential, and protein stability upon curcumin binding is well correlated to relative structure loss, which can be predicted by in silico docking.


Assuntos
Curcumina , Sequência de Aminoácidos , Proteínas/química , Domínios Proteicos , Estabilidade Proteica
5.
ACS Biomater Sci Eng ; 8(7): 2747-2763, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35678203

RESUMO

Microrheology based on video microscopy of embedded tracer particles has the potential to be used for high-throughput protein-based materials characterization. This potential is due to a number of characteristics of the techniques, including the suitability for measurement of low sample volumes, noninvasive and noncontact measurements, and the ability to set up a large number of samples for facile, sequential measurement. In addition to characterization of the bulk rheological properties of proteins in solution, for example, viscosity, microrheology can provide insight into the dynamics and self-assembly of protein-based materials as well as heterogeneities in the microenvironment being probed. Specifically, passive microrheology in the form of multiple particle tracking and differential dynamic microscopy holds promise for applications in high-throughput characterization because of the lack of user interaction required while making measurements. Herein, recent developments in the use of multiple particle tracking and differential dynamic microscopy are reviewed for protein characterization and their potential to be applied in a high-throughput, automatable setting.


Assuntos
Proteínas , Reologia/métodos , Viscosidade
6.
Biomaterials ; 281: 121370, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032910

RESUMO

Protein-based biomaterials offer several advantages over synthetic materials, owing to their unique stimuli-responsive properties, biocompatibility and modular nature. Here, we demonstrate that E5C, a recombinant protein block polymer, consisting of five repeats of elastin like polypeptide (E) and a coiled-coil domain of cartilage oligomeric matrix protein (C), is capable of forming a porous networked gel at physiological temperature, making it an excellent candidate for injectable biomaterials. Combination of E5C with Atsttrin, a chondroprotective engineered derivative of anti-inflammatory growth factor progranulin, provides a unique biochemical and biomechanical environment to protect against post-traumatic osteoarthritis (PTOA) onset and progression. E5C gel was demonstrated to provide prolonged release of Atsttrin and inhibit chondrocyte catabolism while facilitating anabolic signaling in vitro. We also provide in vivo evidence that prophylactic and therapeutic application of Atsttrin-loaded E5C gels protected against PTOA onset and progression in a rabbit anterior cruciate ligament transection model. Collectively, we have developed a unique protein-based gel capable of minimally invasive, sustained delivery of prospective therapeutics, particularly the progranulin-derivative Atsttrin, for therapeutic application in OA.


Assuntos
Lesões do Ligamento Cruzado Anterior , Cartilagem Articular , Osteoartrite , Animais , Materiais Biocompatíveis/uso terapêutico , Cartilagem Articular/metabolismo , Géis , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Polímeros/uso terapêutico , Progranulinas/metabolismo , Progranulinas/uso terapêutico , Coelhos
7.
Mol Syst Des Eng ; 7(8): 915-932, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37274761

RESUMO

Labeled protein-based biomaterials have become a popular for various biomedical applications such as tissue-engineered, therapeutic, or diagnostic scaffolds. Labeling of protein biomaterials, including with ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticles, has enabled a wide variety of imaging techniques. These USPIO-based biomaterials are widely studied in magnetic resonance imaging (MRI), thermotherapy, and magnetically-driven drug delivery which provide a method for direct and non-invasive monitoring of implants or drug delivery agents. Where most developments have been made using polymers or collagen hydrogels, shown here is the use of a rationally designed protein as the building block for a meso-scale fiber. While USPIOs have been chemically conjugated to antibodies, glycoproteins, and tissue-engineered scaffolds for targeting or improved biocompatibility and stability, these constructs have predominantly served as diagnostic agents and often involve harsh conditions for USPIO synthesis. Here, we present an engineered protein-iron oxide hybrid material comprised of an azide-functionalized coiled-coil protein with small molecule binding capacity conjugated via bioorthogonal azide-alkyne cycloaddition to an alkyne-bearing iron oxide templating peptide, CMms6, for USPIO biomineralization under mild conditions. The coiled-coil protein, dubbed Q, has been previously shown to form nanofibers and, upon small molecule binding, further assembles into mesofibers via encapsulation and aggregation. The resulting hybrid material is capable of doxorubicin encapsulation as well as sensitive T2*-weighted MRI darkening for strong imaging capability that is uniquely derived from a coiled-coil protein.

8.
Soft Matter ; 17(26): 6470-6476, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34137426

RESUMO

Owing to their tunable properties, hydrogels comprised of stimuli-sensitive polymers are one of the most appealing scaffolds with applications in tissue engineering, drug delivery and other biomedical fields. We previously reported a thermoresponsive hydrogel formed using a coiled-coil protein, Q. Here, we expand our studies to identify the gelation of Q protein at distinct pH conditions, creating a protein hydrogel system that is sensitive to temperature and pH. Through secondary structure analysis, transmission electron microscopy, and rheology, we observed that Q self-assembles and forms fiber-based hydrogels exhibiting upper critical solution temperature behavior with increased elastic properties at pH 7.4 and pH 10. At pH 6, however, Q forms polydisperse nanoparticles, which do not further self-assemble and undergo gelation. The high net positive charge of Q at pH 6 creates significant electrostatic repulsion, preventing its gelation. This study will potentially guide the development of novel scaffolds and functional biomaterials that are sensitive towards biologically relevant stimuli.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Estrutura Secundária de Proteína , Reologia , Engenharia Tecidual
9.
Biomacromolecules ; 20(9): 3340-3351, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356057

RESUMO

Thermoresponsive hydrogels are used for an array of biomedical applications. Lower critical solution temperature-type hydrogels have been observed in nature and extensively studied in comparison to upper critical solution temperature (UCST)-type hydrogels. Of the limited protein-based UCST-type hydrogels reported, none have been composed of a single coiled-coil domain. Here, we describe a biosynthesized homopentameric coiled-coil protein capable of demonstrating a UCST. Microscopy and structural analysis reveal that the hydrogel is stabilized by molecular entanglement of protein nanofibers, creating a porous matrix capable of binding the small hydrophobic molecule, curcumin. Curcumin binding increases the α-helical structure, fiber entanglement, mechanical integrity, and thermostability, resulting in sustained drug release at physiological temperature. This work provides the first example of a thermoresponsive hydrogel comprised of a single coiled-coil protein domain that can be used as a vehicle for sustained release and, by demonstrating UCST-type behavior, shows promise in forging a relationship between coiled-coil protein-phase behavior and that of synthetic polymer systems.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Polímeros/química , Proteínas/química , Preparações de Ação Retardada/química , Portadores de Fármacos/síntese química , Hidrogéis/síntese química , Interações Hidrofóbicas e Hidrofílicas , Domínios Proteicos/genética , Engenharia de Proteínas , Temperatura
10.
ACS Biomater Sci Eng ; 5(9): 4132-4147, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33417774

RESUMO

Considerable effort has been devoted to generating novel protein- and peptide-based nanomaterials with their applications in a wide range of fields. Specifically, the unique property of proteins to self-assemble has been utilized to create a variety of nanoassemblies, which offer significant possibilities for next-generation biomaterials. In this minireview, we describe self-assembled protein- and peptide-based nanomaterials with focus on nanofibers and nanoparticles. Their applications in delivering therapeutic drugs and genes are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA