RESUMO
RNA helicase DHX15 plays a significant role in vasculature development and lung metastasis in vertebrates. In addition, several studies have demonstrated the overexpression of DHX15 in the context of hepatocellular carcinoma. Therefore, we hypothesized that this helicase may play a significant role in liver regeneration, physiology, and pathology. Dhx15 gene deficiency was generated by CRISPR/Cas9 in zebrafish and by TALEN-RNA in mice. AUM Antisense-Oligonucleotides were used to silence Dhx15 in wild-type mice. The hepatocellular carcinoma tumor induction model was generated by subcutaneous injection of Hepa 1-6 cells. Homozygous Dhx15 gene deficiency was lethal in zebrafish and mouse embryos. Dhx15 gene deficiency impaired liver organogenesis in zebrafish embryos and liver regeneration after partial hepatectomy in mice. Also, heterozygous mice presented decreased number and size of liver metastasis after Hepa 1-6 cells injection compared to wild-type mice. Dhx15 gene silencing with AUM Antisense-Oligonucleotides in wild-type mice resulted in 80% reduced expression in the liver and a significant reduction in other major organs. In addition, Dhx15 gene silencing significantly hindered primary tumor growth in the hepatocellular carcinoma experimental model. Regarding the potential use of DHX15 as a diagnostic marker for liver disease, patients with hepatocellular carcinoma showed increased levels of DHX15 in blood samples compared with subjects without hepatic affectation. In conclusion, Dhx15 is a key regulator of liver physiology and organogenesis, is increased in the blood of cirrhotic and hepatocellular carcinoma patients, and plays a key role in controlling hepatocellular carcinoma tumor growth and expansion in experimental models.
Assuntos
Carcinoma Hepatocelular , RNA Helicases , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Oligonucleotídeos , RNA Helicases/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Nitric oxide (NO) is a small vasodilator playing a key role in the pathogenesis of portal hypertension. Here, we assessed the potential therapeutic effect of a NO donor targeted to the liver by poly(beta-amino ester) nanoparticles (pBAE NPs) in experimental cirrhosis. Retinol-functionalized NO donor pBAE NPs (Ret pBAE NPs) were synthetized with the aim of actively targeting the liver. Administration of Ret pBAE NPs resulted in uptake and transfection by the liver and spleen. NPs were not found in other organs or the systemic circulation. Treatment with NO donor Ret pBAE NPs (30 mg/ kg body weight) significantly decreased aspartate aminotransferase, lactate dehydrogenase and portal pressure (9.75 ± 0.64 mmHg) compared to control NPs (13.4 ± 0.53 mmHg) in cirrhotic rats. There were no effects on mean arterial pressure and cardiac output. Liver-targeted NO donor NPs reduced collagen fibers and steatosis, activation of hepatic stellate cells and mRNA expression of profibrogenic and proinflammatory genes. Finally, Ret pBAE NPs displayed efficient transfection in human liver slices. Overall, liver-specific NO donor NPs effectively target the liver and mitigated inflammation and portal hypertension in cirrhotic rats. The use of Ret pBAE may prove to be an effective therapeutic strategy to treat advanced liver disease.
Assuntos
Hipertensão Portal , Cirrose Hepática Experimental , Nanopartículas , Ratos , Humanos , Animais , Óxido Nítrico/metabolismo , Fígado , Hipertensão Portal/tratamento farmacológico , Cirrose Hepática Experimental/metabolismo , Doadores de Óxido Nítrico/farmacologia , Cirrose Hepática/tratamento farmacológicoRESUMO
Accumulation of lipid-laden macrophages within the arterial neointima is a critical step in atherosclerotic plaque formation. Here, we show that reduced levels of the cellular plasticity factor ZEB1 in macrophages increase atherosclerotic plaque formation and the chance of cardiovascular events. Compared to control counterparts (Zeb1WT/ApoeKO), male mice with Zeb1 ablation in their myeloid cells (Zeb1∆M/ApoeKO) have larger atherosclerotic plaques and higher lipid accumulation in their macrophages due to delayed lipid traffic and deficient cholesterol efflux. Zeb1∆M/ApoeKO mice display more pronounced systemic metabolic alterations than Zeb1WT/ApoeKO mice, with higher serum levels of low-density lipoproteins and inflammatory cytokines and larger ectopic fat deposits. Higher lipid accumulation in Zeb1∆M macrophages is reverted by the exogenous expression of Zeb1 through macrophage-targeted nanoparticles. In vivo administration of these nanoparticles reduces atherosclerotic plaque formation in Zeb1∆M/ApoeKO mice. Finally, low ZEB1 expression in human endarterectomies is associated with plaque rupture and cardiovascular events. These results set ZEB1 in macrophages as a potential target in the treatment of atherosclerosis.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Regulação para Baixo , Lipoproteínas LDL/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismoRESUMO
Hepatic inflammation is a common trigger of chronic liver disease. Macrophage activation is a predictive parameter for survival in patients with cirrhosis. Ring finger protein 41 (RNF41) negatively regulates proinflammatory cytokines and receptors; however, the precise involvement of macrophage RNF41 in liver cirrhosis remains unknown. Here, we sought to understand how RNF41 dictates macrophage fate in hepatic fibrosis and repair within the inflammatory milieu. We found that RNF41 expression is down-regulated in CD11b+ macrophages recruited to mouse fibrotic liver and to patient cirrhotic liver regardless of cirrhosis etiology. Prolonged inflammation with TNF-α progressively reduced macrophage RNF41 expression. We designed a macrophage-selective gene therapy with dendrimer-graphite nanoparticles (DGNPs) to explore the influence of macrophage RNF41 restoration and depletion in liver fibrosis and regeneration. RNF41 expression induced in CD11b+ macrophages by DGNP-conjugated plasmids ameliorated liver fibrosis, reduced liver injury, and stimulated hepatic regeneration in fibrotic mice with or without hepatectomy. This therapeutic effect was mainly mediated by the induction of insulin-like growth factor 1. Conversely, depletion of macrophage RNF41 worsened inflammation, fibrosis, hepatic damage, and survival. Our data reveal implications of macrophage RNF41 in the control of hepatic inflammation, fibrosis, and regeneration and provide a rationale for therapeutic strategies in chronic liver disease and potentially other diseases characterized by inflammation and fibrosis.
Assuntos
Inflamação , Cirrose Hepática , Animais , Camundongos , Citocinas , MacrófagosRESUMO
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Assuntos
Células Endoteliais , Monócitos , Macrófagos/metabolismo , Comunicação Celular , Citocinas/metabolismoRESUMO
BACKGROUND & AIMS: Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS: Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS: Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS: We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.
Assuntos
Fibroblastos , Fígado , Humanos , Camundongos , Animais , Fibroblastos/patologia , Fígado/patologia , Cirrose Hepática/patologia , Mitocôndrias/patologia , Fatores de Transcrição/genéticaRESUMO
Macrophages play essential roles during the progression of chronic liver disease. They actively participate in the response to liver damage and in the balance between fibrogenesis and regression. The activation of the PPARγ nuclear receptor in macrophages has traditionally been associated with an anti-inflammatory phenotype. However, there are no PPARγ agonists with high selectivity for macrophages, and the use of full agonists is generally discouraged due to severe side effects. We designed dendrimer-graphene nanostars linked to a low dose of the GW1929 PPARγ agonist (DGNS-GW) for the selective activation of PPARγ in macrophages in fibrotic livers. DGNS-GW preferentially accumulated in inflammatory macrophages in vitro and attenuated macrophage pro-inflammatory phenotype. The treatment with DGNS-GW in fibrotic mice efficiently activated liver PPARγ signaling and promoted a macrophage switch from pro-inflammatory M1 to anti-inflammatory M2 phenotype. The reduction of hepatic inflammation was associated with a significant reduction in hepatic fibrosis but did not alter liver function or hepatic stellate cell activation. The therapeutic antifibrotic utility of DGNS-GW was attributed to an increased expression of hepatic metalloproteinases that allowed extracellular matrix remodeling. In conclusion, the selective activation of PPARγ in hepatic macrophages with DGNS-GW significantly reduced hepatic inflammation and stimulated extracellular matrix remodeling in experimental liver fibrosis.
RESUMO
Auricular reconstruction in children with microtia is one of the more complex procedures in plastic surgery. Obtaining sufficient native material to build an ear requires harvesting large fragments of rib cartilage in children. Herein, we investigated how to optimize autologous chondrocyte isolation, expansion and re-implantation using polyglycolic acid (PGA) scaffolds for generating enough cartilage to recapitulate a whole ear starting from a small ear biopsy. Ear chondrocytes isolated from human microtia subjects grew slower than microtia rib or healthy ear chondrocytes and displayed a phenotypic shift due to the passage number. Rabbit ear chondrocytes co-cultured with mesenchymal stem cells (MSC) at a 50 : 50 ratio recapitulated the cartilage biological properties in vitro. However, PGA scaffolds with different proportions of rabbit chondrocytes and MSC did not grow substantially in two months when subcutaneously implanted in immunosuppressed mice. In contrast, rabbit chondrocyte-seeded PGA scaffolds implanted in immunocompetent rabbits formed a cartilage 10 times larger than the original PGA scaffold. This cartilage mimicked the biofunctional and mechanical properties of an ear cartilage. These results indicate that autologous chondrocyte-seeded PGA scaffolds fabricated following our optimized procedure have immense potential as a solution for obtaining enough cartilage for auricular reconstruction and opens new avenues to redefine autologous cartilage replacement.
Assuntos
Condrócitos , Microtia Congênita , Criança , Humanos , Coelhos , Animais , Camundongos , Cartilagem da Orelha , Alicerces Teciduais , Ácido Poliglicólico , Engenharia Tecidual/métodosRESUMO
BACKGROUND AND AIMS: PTTG1 is almost undetectable in adult livers but is highly expressed in hepatocarcinoma. While little is known about its involvement in liver fibrosis, PTTG1 expression is associated with DLK1. We assessed the role of the PTTG1/DLK1 pathway in fibrosis progression and the potential therapeutic effect of PTTG1 silencing in fibrosis. METHODS: Pttg1 and Dlk1 were studied in liver and isolated cell populations of control and fibrotic rats and in human liver biopsies. The fibrotic molecular signature was analysed in Pttg1-/- and Pttg1+/+ fibrotic mice. Finally, Pttg1 silencing was evaluated in rats as a novel antifibrotic therapy. RESULTS: Pttg1 and Dlk1 mRNA selectively increased in fibrotic rats paralleling fibrosis progression. Serum DLK1 concentrations correlated with hepatic collagen content and systemic and portal haemodynamics. Human cirrhotic livers showed greater PTTG1 and DLK1 transcript abundance than non-cirrhotic, and reduced collagen was observed in Pttg1 Pttg1-/- mice. The liver fibrotic molecular signature revealed lower expression of genes related to extracellular matrix remodelling including Mmp8 and 9 and Timp4 and greater eotaxin and Mmp13 than fibrotic Pttg1+/+ mice. Finally, interfering Pttg1 resulted in reduced liver fibrotic area, lower α-Sma and decreased portal pressure than fibrotic animals. Furthermore, Pttg1 silencing decreased the transcription of Dlk1, collagens I and III, Pdgfrß, Tgfrß, Timp1, Timp2 and Mmp2. CONCLUSIONS: Pttg1/Dlk1 are selectively overexpressed in the cirrhotic liver and participate in ECM turnover regulation. Pttg1 disruption decreases Dlk1 transcription and attenuates collagen deposition. PTTG1/DLK1 signalling is a novel pathway for targeting the progression of liver fibrosis.
Assuntos
Proteínas de Ligação ao Cálcio , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana , Neoplasias Hipofisárias , Securina , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Oncogenes , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Ratos , Securina/genética , Securina/metabolismoRESUMO
Nanoparticles are nanomaterials with three external nanoscale dimensions and an average size ranging from 1 to 1000 nm. Nanoparticles have gained notoriety in technological advances due to their tunable physical, chemical, and biological characteristics. However, the administration of functionalized nanoparticles to living beings is still challenging due to the rapid detection and blood and tissue clearance by the mononuclear phagocytic system. The major exponent of this system is the macrophage. Regardless the nanomaterial composition, macrophages can detect and incorporate foreign bodies by phagocytosis. Therefore, the simplest explanation is that any injected nanoparticle will be probably taken up by macrophages. This explains, in part, the natural accumulation of most nanoparticles in the spleen, lymph nodes, and liver (the main organs of the mononuclear phagocytic system). For this reason, recent investigations are devoted to design nanoparticles for specific macrophage targeting in diseased tissues. The aim of this review is to describe current strategies for the design of nanoparticles to target macrophages and to modulate their immunological function involved in different diseases with special emphasis on chronic inflammation, tissue regeneration, and cancer.
RESUMO
Ethylcellulose is a biocompatible polymer attracting increasing interest for biomedical applications. In the present work, the formation of folate-ethylcellulose nanoparticle complexes from nano-emulsion templates prepared by a low-energy approach, using aqueous components suitable for biomedical applications has been investigated. The composition of the aqueous component is shown to be crucial for the formation of stable nano-emulsions and influences the zeta potential values. The ethylcellulose nanoparticles with mean sizes around 100 nm were obtained from the nano-emulsions by solvent evaporation and showed positive zeta potential values above +20 mV due to the presence of the cationic surfactant. The nanoparticles were successfully complexed with folate, as evidenced by both particle size and zeta potential measurements. The complexes prepared with HEPES buffered glucose solution showed excellent haemocompatibility, which make them promising for parenteral therapeutic applications and also for those in which easy access to systemic circulation may occur, like in lungs.
Assuntos
Nanopartículas , Celulose/análogos & derivados , Emulsões , Ácido Fólico , Tamanho da PartículaRESUMO
Cancer has become one of the most prevalent diseases worldwide, with increasing incidence in recent years. Current pharmacological strategies are not tissue-specific therapies, which hampers their efficacy and results in toxicity in healthy organs. Carbon-based nanomaterials have emerged as promising nanoplatforms for the development of targeted delivery systems to treat diseased cells. Single-walled carbon nanohorns (SWCNH) are graphene-based horn-shaped nanostructure aggregates with a multitude of versatile features to be considered as suitable nanosystems for targeted drug delivery. They can be easily synthetized and functionalized to acquire the desired physicochemical characteristics, and no toxicological effects have been reported in vivo followed by their administration. This review focuses on the use of SWCNH as drug delivery systems for cancer therapy. Their main applications include their capacity to act as anticancer agents, their use as drug delivery systems for chemotherapeutics, photothermal and photodynamic therapy, gene therapy, and immunosensing. The structure, synthesis, and covalent and non-covalent functionalization of these nanoparticles is also discussed. Although SWCNH are in early preclinical research yet, these nanotube-derived nanostructures demonstrate an interesting versatility pointing them out as promising forthcoming drug delivery systems to target and treat cancer cells.
RESUMO
Cerium oxide nanoparticles (CeO2NPs) possess powerful antioxidant properties, thus emerging as a potential therapeutic tool in non-alcoholic fatty liver disease (NAFLD) progression, which is characterized by a high presence of reactive oxygen species (ROS). The aim of this study was to elucidate whether CeO2NPs can prevent or attenuate oxidant injury in the hepatic human cell line HepG2 and to investigate the mechanisms involved in this phenomenon. The effect of CeO2NPs on cell viability and ROS scavenging was determined, the differential expression of pro-inflammatory and oxidative stress-related genes was analyzed, and a proteomic analysis was performed to assess the impact of CeO2NPs on cell phosphorylation in human hepatic cells under oxidative stress conditions. CeO2NPs did not modify HepG2 cell viability in basal conditions but reduced H2O2- and lipopolysaccharide (LPS)-induced cell death and prevented H2O2-induced overexpression of MPO, PTGS1 and iNOS. Phosphoproteomic analysis showed that CeO2NPs reverted the H2O2-mediated increase in the phosphorylation of peptides related to cellular proliferation, stress response, and gene transcription regulation, and interfered with H2O2 effects on mTOR, MAPK/ERK, CK2A1 and PKACA signaling pathways. In conclusion, CeO2NPs protect HepG2 cells from cell-induced oxidative damage, reducing ROS generation and inflammatory gene expression as well as regulation of kinase-driven cell survival pathways.
Assuntos
Cério/farmacologia , Hepatócitos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Oxidantes/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacosRESUMO
Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.
Assuntos
Apelina/metabolismo , Endocanabinoides/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Proteínas de Transporte/metabolismo , Circulação Êntero-Hepática/fisiologia , Fibrose , Humanos , Hipertensão Portal , Inflamação/patologia , Fígado/patologia , Circulação Hepática/fisiologia , Sistema Porta/fisiologiaRESUMO
Fibrosis contributes to â¼45% of all deaths in industrialized nations, but no direct antifibrotic therapeutic interventions exist to date. Graphene-based nanomaterials exhibit excellent versatility in electronics, and emerging trends exploit their properties for biomedical applications, especially for drug and gene delivery. We designed constructs of graphene nanostars linked to PAMAM-G5 dendrimer for the selective targeting and delivery of a plasmid expressing the collagenase metalloproteinase 9 under the CD11b promoter into inflammatory macrophages in cirrhotic livers. Graphene nanostars preferentially accumulated in inflammatory macrophages M1 in less than 3 h in a manner unaffected by covalent linkage to dendrimers. Dendrimer-graphene nanostars efficiently delivered the plasmid encoding for metalloproteinase 9 into macrophages, allowing the synthesis and secretion of the metalloproteinase to digest adjacent collagen fibers. In turn, metalloproteinase 9 overexpression promoted the macrophage switch from inflammatory M1 to pro-regenerative M2 in 3 days. This targeted gene therapy reduced selectively and locally the presence of collagen fibers in fibrotic tracts where inflammatory macrophages accumulated in cirrhotic mice without affecting the activation state of hepatic stellate cells. Overall, this treatment significantly reduced hepatic injury and improved liver restoration in mice with liver cirrhosis treated for 10 days. Graphene-dendrimer nanostars targeted the macrophage overexpression of metalloproteinase 9, selectively reducing hepatic fibrosis, and might be a good treatment for diseases associated with fibrosis and inflammatory macrophage accumulation.
Assuntos
Dendrímeros/química , Grafite/química , Cirrose Hepática/terapia , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/genética , Nanopartículas/química , Plasmídeos/administração & dosagem , Animais , Técnicas de Transferência de Genes , Terapia Genética , Cirrose Hepática/genética , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Plasmídeos/genética , Plasmídeos/uso terapêutico , Regulação para CimaRESUMO
Chondroitin sulphate (CS) has long been used to treat osteoarthritis. Some investigations have also shown that the treatment with CS could reduce coronary events in patients with heart disease but no studies have identified the mechanistic role of these therapeutic effects. We aimed to investigate how the treatment with CS can interfere with the progress of atherosclerosis. The aortic arch, thoracic aorta and serum were obtained from apolipoprotein E (ApoE) knockout mice fed for 10 weeks with high-fat diet and then treated with CS (300 mg/kg, n = 15) or vehicle (n = 15) for 4 weeks. Atheromatous plaques were highlighted in aortas with Oil Red staining and analysed by microscopy. ApoE knockout mice treated with CS exhibited attenuated atheroma lesion size by 68% as compared with animals receiving vehicle. Serum lipids, glucose and C-reactive protein were not affected by treatment with CS. To investigate whether CS locally affects the inflamed endothelium or the formation of foam cells in plaques, human endothelial cells and monocytes were stimulated with tumour necrosis factor α or phorbol myristate acetate in the presence or absence of CS. CS reduced the expression of vascular cell adhesion molecule 1, intercellular adhesion molecule 1 and ephrin-B2 and improved the migration of inflamed endothelial cells. CS inhibited foam cell formation in vivo and concomitantly CD36 and CD146 expression and oxidized low-density lipoprotein uptake and accumulation in cultured activated human monocytes and macrophages. Reported cardioprotective effects of CS may arise from modulation of pro-inflammatory activation of endothelium and monocytes and foam cell formation.
Assuntos
Anti-Inflamatórios/farmacologia , Aorta Torácica/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Sulfatos de Condroitina/farmacologia , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Glicemia/metabolismo , Proteína C-Reativa/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/sangue , Lipídeos/sangue , Lipoproteínas LDL/metabolismo , Masculino , Camundongos Knockout para ApoE , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Placa Aterosclerótica , Células THP-1RESUMO
Porcine glutaraldehyde-fixed pericardium is widely used to replace human heart valves. Despite the stabilizing effects of glutaraldehyde fixation, the lack of endothelialization and the occurrence of immune reactions contribute to calcification and structural valve deterioration, which is particularly significant in young patients, in whom valve longevity is crucial. This report shows an optimization system with which to enhance endothelialization of fixed pericardium to mimic the biological function of a native heart valve. The glutaraldehyde detoxification, together with the application of a biodegradable methacrylated chondroitin sulfate hydrogel, reduces aldehydes cytotoxicity, increases the migration and proliferation of endothelial cells and the recruitment of endothelial cell progenitors, and confers thromboresistance in fixed pericardium. The combination of glutaraldehyde detoxification and a coating with chondroitin sulfate hydrogel promotes in situ mechanisms of endothelialization in fixed pericardium. We offer a new solution for improving the long life of bioprosthetic valves and exploring the means of making valves suitable to endothelialization.
Assuntos
Sulfatos de Condroitina/química , Valvas Cardíacas/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Pericárdio/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sulfatos de Condroitina/farmacologia , Deterioração Clínica , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Glutaral/química , Valvas Cardíacas/fisiopatologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Pericárdio/fisiopatologia , SuínosRESUMO
Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl4 A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl4-treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-ß1 (TGF-ß1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P < 0.05). The decrease of EndMT in cirrhotic livers correlated with a significant decrease in liver fibrosis (P < 0.05) and an improvement in the vascular disorganization rate (P < 0.05). We demonstrated the acquisition of the EndMT phenotype by a subpopulation of endothelial cells from cirrhotic livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization.NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-ß1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Células Endoteliais/patologia , Fígado/patologia , Migração Transendotelial e Transepitelial , Actinas/metabolismo , Animais , Proteína Morfogenética Óssea 7/biossíntese , Proteína Morfogenética Óssea 7/genética , Intoxicação por Tetracloreto de Carbono/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Fator de Crescimento Transformador beta1/farmacologiaRESUMO
Microvascular endothelial cells at the blood-brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10-20 dyn/cm2) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm2) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.
Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Microvasos/metabolismo , Junções Íntimas/metabolismo , Fenômenos Biomecânicos , Barreira Hematoencefálica/ultraestrutura , Permeabilidade Capilar , Técnicas de Cultura de Células , Células Cultivadas , Claudina-5/genética , Claudina-5/metabolismo , Meios de Cultivo Condicionados , Regulação para Baixo , Células Endoteliais/ultraestrutura , Endotélio Vascular/ultraestrutura , Humanos , Microscopia de Fluorescência , Microvasos/ultraestrutura , Modelos Biológicos , Fluxo Pulsátil , Resistência ao Cisalhamento , Estresse Mecânico , Junções Íntimas/ultraestrutura , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
OBJECTIVE: Liver transplantation is limited by ischaemic injury which promotes endothelial cell and hepatocyte dysfunction and eventually organ failure. We sought to understand how endothelial state determines liver recovery after hepatectomy and engraftment. DESIGN: Matrix-embedded endothelial cells (MEECs) with retained healthy phenotype or control acellular matrices were implanted in direct contact with the remaining median lobe of donor mice undergoing partial hepatectomy (70%), or in the interface between the remaining median lobe and an autograft or isograft from the left lobe in hepatectomised recipient mice. Hepatic vascular architecture, DNA fragmentation and apoptosis in the median lobe and grafts, serum markers of liver damage and phenotype of macrophage and lymphocyte subsets in the liver after engraftment were analysed 7â days post-op. RESULTS: Healthy MEECs create a functional vascular splice in donor and recipient liver after 70% hepatectomy in mouse protecting these livers from ischaemic injury, hepatic congestion and inflammation. Macrophages recruited adjacent to the vascular nodes into the implants switched to an anti-inflammatory and regenerative profile M2. MEECs improved liver function and the rate of liver regeneration and prevented apoptosis in donor liver lobes, autologous grafts and syngeneic engraftment. CONCLUSIONS: Implants with healthy endothelial cells rescue liver donor and recipient endothelium and parenchyma from ischaemic injury after major hepatectomy and engraftment. This study highlights endothelial-hepatocyte crosstalk in hepatic repair and provides a promising new approach to improve regenerative medicine outcomes and liver transplantation.