Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
2.
Discov Oncol ; 12(1): 14, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201472

RESUMO

While non-melanoma skin cancers (NMSCs) are the most common tumours in humans, only the sub-type cutaneous squamous cell carcinoma (cSCC), might become metastatic with high lethality. We have recently identified a regulatory pathway involving the lncRNA transcript uc.291 in controlling the expression of epidermal differentiation complex genes via the interaction with ACTL6A, a component of the chromatin remodelling complex SWI/SNF. Since transcribed ultra-conserved regions (T-UCRs) are expressed in normal tissues and are deregulated in tumorigenesis, here we hypothesize a potential role for dysregulation of this axis in cSCC, accounting for the de-differentiation process observed in aggressive poorly differentiated cutaneous carcinomas. We therefore analysed their expression patterns in human tumour biopsies at mRNA and protein levels. The results suggest that by altering chromatin accessibility of the epidermal differentiation complex genes, down-regulation of uc.291 and BRG1 expression contribute to the de-differentiation process seen in keratinocyte malignancy. This provides future direction for the identification of clinical biomarkers in cutaneous SCC. Analysis of publicly available data sets indicates that the above may also be a general feature for SCCs of different origins.

3.
Biochemistry (Mosc) ; 85(10): 1202-1209, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33202205

RESUMO

Over 20 years after identification of p53 and its crucial function in cancer progression, two members of the same protein family were identified, namely p63 and p73. Since then, a body of information has been accumulated on each of these genes and their interrelations. Biological role of p73 has been elucidated thanks to four distinct knockout mice models: (i) with deletion of the entire TP73 gene, (ii) with deletion of exons encoding the full length TAp73 isoforms, (iii) with deletions of exons encoding the shorter DNp73 isoform, and (iv) with deletion of exons encoding C-terminal of the alpha isoform. This work, as well as expression studies in cancer and overwhelming body of molecular studies, allowed establishing major role of TP73 both in cancer and in neuro-development, as well as ciliogenesis, and metabolism. Here, we recapitulate the major milestones of this endeavor.


Assuntos
Proteína Tumoral p73/fisiologia , Animais , Carcinogênese , Humanos , Camundongos , Camundongos Knockout , Neurogênese , Transdução de Sinais
4.
Amino Acids ; 52(8): 1125-1137, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32757125

RESUMO

Interest in adipose tissue pathophysiology and biochemistry have expanded considerably in the past two decades due to the ever increasing and alarming rates of global obesity and its critical outcome defined as metabolic syndrome (MS). This obesity-linked systemic dysfunction generates high risk factors of developing perilous diseases like type 2 diabetes, cardiovascular disease or cancer. Amino acids could play a crucial role in the pathophysiology of the MS onset. Focus of this study was to fully characterize amino acids metabolome modulations in visceral adipose tissues (VAT) from three adult cohorts: (i) obese patients (BMI 43-48) with metabolic syndrome (PO), (ii) obese subjects metabolically well (O), and (iii) non obese individuals (H). 128 metabolites identified as 20 protein amino acids, 85 related compounds and 13 dipeptides were measured by ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) and gas chromatography-/mass spectrometry GC/MS, in visceral fat samples from a total of 53 patients. Our analysis indicates a probable enhanced BCAA (leucine, isoleucine, valine) degradation in both VAT from O and PO subjects, while levels of their oxidation products are increased. Also PO and O VAT samples were characterized by: elevated levels of kynurenine, a catabolic product of tryptophan and precursor of diabetogenic substances, a significant increase of cysteine sulfinic acid levels, a decrease of 1-methylhistidine, and an up regulating trend of 3-methylhistidine levels. We hope this profiling can aid in novel clinical strategies development against the progression from obesity to metabolic syndrome.


Assuntos
Aminoácidos/metabolismo , Gordura Intra-Abdominal/metabolismo , Metabolômica/métodos , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Aminoácidos de Cadeia Ramificada/metabolismo , Cromatografia Líquida/métodos , Cisteína/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Histidina/metabolismo , Humanos , Masculino , Metaboloma , Metionina/metabolismo , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos , Taurina/metabolismo , Triptofano/metabolismo , Adulto Jovem
5.
Folia Biol (Praha) ; 65(4): 170-180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31903890

RESUMO

The pathogenic molecular mechanisms underlying the insurgence of nasal polyps has not been completely defined. In some patients, these lesions can have a recurrence after surgery removal, and the difference between recurrent and not recurrent patients is still unclear. To molecularly characterize and distinguish between these two classes, a cohort of patients affected by nasal polyposis was analysed. In all patients we analysed the p63 isoform expression using fresh tissues taken after surgery. Moreover, confocal immunofluorescence analysis of fixed sections was performed. The results show high ΔNp63 expression in samples from the nasal polyps of patients compared to the normal epithelia. Analysis of the expression level of the TAp63 isoform shows differential expression between the patients with recurrence compared to those not recurring. The data, considered as the ΔN/TAp63 ratio, really discriminate the two groups. In fact, even though ΔNp63 is expressed in non-recurrent patients, the resulting ratio ΔN/TAp63 is significantly lower in these patients. This clearly indicates that the status of TAp63 expression, represented by the ΔN/TAp63 ratio, could be considered a prognostic marker of low recurrence probability. In these samples we also investigated the expression of OTX2 transcription factor, known to be a selective activator of TAp63, detecting a significant correlation. Database analysis of HNSCC patients showed increased survival for the patients presenting OTX2 amplification and/or overexpression. These results, together with the fact that TAp63 can be selectively upregulated by HDAC inhibitors, open the possibility to consider local treatment of recurrent nasal polyps with these molecules.


Assuntos
Pólipos Nasais/metabolismo , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Pólipos Nasais/genética , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Isoformas de Proteínas/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
6.
Leukemia ; 32(4): 911-919, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29209041

RESUMO

The E3 ubiquitin ligase (E3) WWP1 is an oncogenic factor implicated in the maintenance of different types of epithelial cancers. The role of WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) in haematological neoplasms remains unknown. Acute myeloid leukaemia (AML) is characterized by the expansion of malignant myeloid cells blocked at different stages of differentiation. Here we report that the expression of WWP1 is significantly augmented in a large cohort of primary AML patients and in AML cell lines, compared with haematopoietic cells from healthy donors. We show that WWP1 inactivation severely impairs the growth of primary AML blasts and cell lines in vitro. In vivo, we observed a reduced leukaemogenic potential of WWP1-depleted AML cells upon transplantation into immunocompromised mice. Mechanistically, WWP1 inactivation induces the accumulation of its protein substrate p27Kip1, which ultimately contributes to G0/G1 cell cycle arrest of AML blasts. In addition, WWP1 depletion triggers the autophagy signalling and reduces survival of leukaemic cells. Collectively, our findings provide molecular insights into the anti-cancer potential of WWP1 inhibition, suggesting that this E3 is a promising biomarker and druggable target in AML.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fase G1/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Fase de Repouso do Ciclo Celular/fisiologia , Transdução de Sinais/fisiologia , Células U937 , Ubiquitinação/fisiologia
7.
Ann Ig ; 29(5): 371-379, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715044

RESUMO

Throughout his 94 years of life, Carmine Melino brilliantly pursued different professional paths, his life being a constant stimulus for students, colleagues, friends and the family. Following the early formative years of study, here, we briefly list his scientific achievements in Occupational Medicine and Hygiene as well as his broad literary interests. Carmine was an inspiration to his generation not only because of his professional achievements, but also for his warm personality, exemplary hard-playing life and unbounded enthusiasm. A polymath, post-enlightenment ethos flowed to all his friends and colleagues, creating an ambience where intellectual excellence was highly appreciated and avidly pursued.


Assuntos
Academias e Institutos/história , Higiene/história , Medicina do Trabalho/história , História do Século XX , História do Século XXI , Humanos , Itália
9.
Oncogene ; 36(32): 4573-4584, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28368399

RESUMO

Recent evidences suggest that stearoyl-CoA-desaturase 1 (SCD1), the enzyme involved in monounsaturated fatty acids synthesis, has a role in several cancers. We previously demonstrated that SCD1 is important in lung cancer stem cells survival and propagation. In this article, we first show, using primary cell cultures from human lung adenocarcinoma, that the effectors of the Hippo pathway, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are required for the generation of lung cancer three-dimensional cultures and that SCD1 knock down and pharmacological inhibition both decrease expression, nuclear localization and transcriptional activity of YAP and TAZ. Regulation of YAP/TAZ by SCD1 is at least in part dependent upon ß-catenin pathway activity, as YAP/TAZ downregulation induced by SCD1 blockade can be rescued by the addition of exogenous wnt3a ligand. In addition, SCD1 activation of nuclear YAP/TAZ requires inactivation of the ß-catenin destruction complex. In line with the in vitro findings, immunohistochemistry analysis of lung adenocarcinoma samples showed that expression levels of SCD1 co-vary with those of ß-catenin and YAP/TAZ. Mining available gene expression data sets allowed to observe that high co-expression levels of SCD1, ß-catenin, YAP/TAZ and downstream targets have a strong negative prognostic value in lung adenocarcinoma. Finally, bioinformatics analyses directed to identify which gene combinations had synergistic effects on clinical outcome in lung cancer showed that poor survival is associated with high co-expression of SCD1, ß-catenin and the YAP/TAZ downstream target birc5. In summary, our data demonstrate for the first time the involvement of SCD1 in the regulation of the Hippo pathway in lung cancer, and point to fatty acids metabolism as a key regulator of lung cancer stem cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/metabolismo , Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Complexo de Sinalização da Axina/metabolismo , Regulação para Baixo , Ácidos Graxos/metabolismo , Feminino , Células HEK293 , Via de Sinalização Hippo , Humanos , Imuno-Histoquímica , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Neoplasias/metabolismo , Cultura Primária de Células , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , RNA Mensageiro/metabolismo , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/genética , Survivina , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteína Wnt3A/metabolismo , Proteínas de Sinalização YAP
10.
Oncogene ; 36(33): 4673-4681, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28394347

RESUMO

In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death. It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR regulation.


Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , Proteínas de Ligação a DNA/metabolismo , Transativadores/metabolismo , Dedos de Zinco , Animais , Ciclo Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Repressoras , Transativadores/química , Transativadores/genética
11.
J Intern Med ; 281(5): 471-482, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28345303

RESUMO

Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed.


Assuntos
Envelhecimento/fisiologia , Artérias/fisiopatologia , Aterosclerose/fisiopatologia , Endotélio Vascular/fisiopatologia , Calcificação Vascular/fisiopatologia , Envelhecimento/patologia , Artérias/patologia , Aterosclerose/patologia , Humanos , Placa Aterosclerótica/patologia , Placa Aterosclerótica/fisiopatologia , Estresse Fisiológico/fisiologia
12.
Oncogene ; 36(7): 922-932, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-27452519

RESUMO

p53 is a critical tumor suppressor in humans. It functions mostly as a transcriptional factor and its activity is regulated by numerous post-translational modifications. Among different covalent modifications found on p53 the most controversial one is lysine methylation. We found that human G9a (hG9a) unlike its mouse orthologue (mG9a) potently stimulated p53 transcriptional activity. Both ectopic and endogenous hG9a augmented p53-dependent transcription of pro-apoptotic genes, including Bax and Puma, resulting in enhanced apoptosis and reduced colony formation. Significantly, shRNA-mediated knockdown of hG9a attenuated p53-dependent activation of Puma. On the molecular level, hG9a interacted with histone acetyltransferase, p300/CBP, resulting in increased histone acetylation at the promoter of Puma. The bioinformatics data substantiated our findings showing that positive correlation between G9a and p53 expression is associated with better survival of lung cancer patients. Collectively, this study demonstrates that depending on the cellular and organismal context, orthologous proteins may exert both overlapping and opposing functions. Furthermore, this finding has important ramifications on the use of G9a inhibitors in combination with genotoxic drugs to treat p53-positive tumors.


Assuntos
Neoplasias do Colo/patologia , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pulmonares/patologia , Proteína Supressora de Tumor p53/genética , Acetilação , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Adesão Celular , Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Estadiamento de Neoplasias , Prognóstico , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/genética , Taxa de Sobrevida , Transcrição Gênica , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
14.
Cell Death Dis ; 7(8): e2344, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27537526

RESUMO

The epidermis is a dynamic tissue in which keratinocytes proliferate in the basal layer and undergo a tightly controlled differentiation while moving into the suprabasal layers. The balance between keratinocyte proliferation, differentiation, and death is essential, and its perturbation can result in pathological changes. Some common skin diseases, such as psoriasis, are characterized by hyperproliferation accompanied by inflammatory reactions, suggesting that molecules with topical anti-inflammatory and ROS scavenging abilities may be useful for their treatment. Here we investigate the potential of the flavone Luteolin-7-glucoside (LUT-7G) as a treatment for psoriasis. We show that LUT-7G leads to a modification of the cell cycle and the induction of keratinocyte differentiation, with modification of energy, fatty acid, and redox metabolism. LUT-7G treatment also neutralizes the proliferative stimulus induced by the proinflammatory cytokines IL-22 and IL-6 in HEKn. Moreover, in the Imiquimod (IMQ) mouse model of psoriasis, topical administration of LUT-7G leads to a marked reduction of acanthosis and re-expression of epidermal differentiation markers. Dissection of the IL-22 signalling pathway, activated by IMQ treatment, demonstrates that LUT-7G impairs the nuclear translocation of phosphorylated (activated) STAT3, blocking the IL-22 signalling cascade. Thus LUT-7G appears to be a promising compound for the treatment of hyperproliferative and inflammatory skin diseases, such as psoriasis.


Assuntos
Acantose Nigricans/tratamento farmacológico , Glucosídeos/farmacologia , Inflamação/tratamento farmacológico , Interleucinas/metabolismo , Queratinócitos/patologia , Luteolina/farmacologia , Psoríase/tratamento farmacológico , Psoríase/patologia , Fator de Transcrição STAT3/metabolismo , Acantose Nigricans/complicações , Acantose Nigricans/metabolismo , Acantose Nigricans/patologia , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Animais , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glucosídeos/uso terapêutico , Humanos , Imiquimode , Imuno-Histoquímica , Inflamação/complicações , Inflamação/patologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lipídeos/biossíntese , Luteolina/uso terapêutico , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Fenótipo , Transporte Proteico/efeitos dos fármacos , Psoríase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Interleucina 22
15.
Cell Death Dis ; 7: e2227, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27195674

RESUMO

EEC (ectrodactily-ectodermal dysplasia and cleft lip/palate) syndrome is a rare genetic disease, autosomal dominant inherited. It is part of the ectodermal dysplasia disorders caused by heterozygous mutations in TP63 gene. EEC patients present limb malformations, orofacial clefting, skin and skin's appendages defects, ocular abnormalities. The transcription factor p63, encoded by TP63, is a master gene for the commitment of ectodermal-derived tissues, being expressed in the apical ectodermal ridge is critical for vertebrate limb formation and, at a later stage, for skin and skin's appendages development. The ΔNp63α isoform is predominantly expressed in epithelial cells and it is indispensable for preserving the self-renewal capacity of adult stem cells and to engage specific epithelial differentiation programs. Small interfering RNA (siRNA) offers a potential therapy approach for EEC patients by selectively silencing the mutant allele. Here, using a systemic screening based on a dual-luciferase reported gene assay, we have successfully identified specific siRNAs for repressing the EEC-causing p63 mutant, R304W. Upon siRNA treatment, we were able to restore ΔNp63-WT allele transcriptional function in induced pluripotent stem cells that were derived from EEC patient biopsy. This study demonstrates that siRNAs approach is promising and, may pave the way for curing/delaying major symptoms, such as cornea degeneration and skin erosions in young EEC patients.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Displasia Ectodérmica/genética , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Alelos , Sequência de Bases , Fenda Labial/metabolismo , Fenda Labial/patologia , Fissura Palatina/metabolismo , Fissura Palatina/patologia , Displasia Ectodérmica/metabolismo , Displasia Ectodérmica/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Genes Dominantes , Genes Reporter , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Luciferases/genética , Luciferases/metabolismo , Terapia de Alvo Molecular , Mutação , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Síndrome , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo
16.
Cell Death Differ ; 23(9): 1502-14, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27058317

RESUMO

Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.


Assuntos
Diferenciação Celular , Engenharia Metabólica , Neurônios/metabolismo , Animais , Diferenciação Celular/fisiologia , DNA Mitocondrial/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Glutamato-Cisteína Ligase/deficiência , Glutamato-Cisteína Ligase/genética , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
17.
Cell Death Dis ; 7: e2148, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26986515

RESUMO

p53MutaGene is the first online tool for statistical validation of hypotheses regarding the effect of p53 mutational status on gene regulation in cancer. This tool is based on several large-scale clinical gene expression data sets and currently covers breast, colon and lung cancers. The tool detects differential co-expression patterns in expression data between p53 mutated versus p53 normal samples for the user-specified genes. Statistically significant differential co-expression for a gene pair is indicative that regulation of two genes is sensitive to the presence of p53 mutations. p53MutaGene can be used in 'single mode' where the user can test a specific pair of genes or in 'discovery mode' designed for analysis of several genes. Using several examples, we demonstrate that p53MutaGene is a useful tool for fast statistical validation in clinical data of p53-dependent gene regulation patterns. The tool is freely available at http://www.bioprofiling.de/tp53.


Assuntos
Regulação Neoplásica da Expressão Gênica , Internet , Mutação , Neoplasias , Software , Proteína Supressora de Tumor p53 , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Cell Death Dis ; 7: e2015, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26775693

RESUMO

It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS.


Assuntos
Neoplasias Ósseas/genética , Genes p53/genética , Células-Tronco Mesenquimais/metabolismo , Osteossarcoma/genética , Neoplasias Ósseas/patologia , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Osteossarcoma/patologia
20.
Oncogene ; 35(25): 3272-81, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-26477317

RESUMO

The Trp53 gene is the most frequently mutated gene in all human cancers. Its protein product p53 is a very powerful transcription factor that can activate different biochemical pathways and affect the regulation of metabolism, senescence, DNA damage response, cell cycle and cell death. The understanding of its function at the molecular level could be of pivotal relevance for therapy. Investigation of long-range intra- and interdomain communications in the p53 tetramer-DNA complex was performed by means of an atomistic model that included the tetramerization helices in the C-terminal domain, the DNA-binding domains and a consensus DNA-binding site of 18 base pairs. Nonsymmetric dynamics are illustrated in the four DNA-binding domains, with loop L1 switching from inward to outward conformations with respect to the DNA major groove. Direct intra- and intermonomeric long-range communications between the tetramerization and DNA-binding domains are noted. These long-distance conformational changes link the C terminus with the DNA-binding domain and provide a biophysical rationale for the reported functional regulation of the p53 C-terminal region. A fine characterization of the DNA deformation caused by p53 binding is obtained, with 'static' deformations always present and measured by the slide parameter in the central thymine-adenine base pairs; we also detect 'dynamic' deformations switched on and off by particular p53 tetrameric conformations and measured by the roll and twist parameters in the same base pairs. These different conformations can indeed modulate the electrostatic potential isosurfaces of the whole p53-DNA complex. These results provide a molecular/biophysical understanding of the evident role of the C terminus in post-translational modification that regulates the transcriptional function of p53. Furthermore, the unstructured C terminus is able to facilitate contacts between the core DNA-binding domains of the tetramer.


Assuntos
DNA/química , Multimerização Proteica , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/química , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Eletricidade Estática , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA