Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Sci Food ; 6(1): 6, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075125

RESUMO

Cultured meat is an emergent technology with the potential for significant environmental and animal welfare benefits. Accurate mimicry of traditional meat requires fat tissue; a key contributor to both the flavour and texture of meat. Here, we show that fibro-adipogenic progenitor cells (FAPs) are present in bovine muscle, and are transcriptionally and immunophenotypically distinct from satellite cells. These two cell types can be purified from a single muscle sample using a simple fluorescence-activated cell sorting (FACS) strategy. FAPs demonstrate high levels of adipogenic potential, as measured by gene expression changes and lipid accumulation, and can be proliferated for a large number of population doublings, demonstrating their suitability for a scalable cultured meat production process. Crucially, FAPs reach a mature level of adipogenic differentiation in three-dimensional, edible hydrogels. The resultant tissue accurately mimics traditional beef fat in terms of lipid profile and taste, and FAPs thus represent a promising candidate cell type for the production of cultured fat.

2.
J Orthop Res ; 38(6): 1228-1237, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31922286

RESUMO

In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distribution by using kinetic forces. However, most dynamic seeding techniques are elaborate or require special equipment and its influence on the final bone tissue-engineered construct is not clear. In this study, we applied a simple, dynamic seeding method using an orbital shaker to seed human bone marrow-derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds. Significantly higher cell numbers with a more homogenous cell distribution, increased osteogenic differentiation, and mineral deposition were observed using the dynamic approach both for 4 and 6 hours as compared to the static seeding method. The positive influence of dynamic seeding could be attributed to both cell density and distribution but also nutrient supply during seeding and shear stresses (0.0-3.0 mPa) as determined by computational simulations. The influence of relevant mechanical stimuli during seeding should be investigated in the future, especially regarding the importance of mechanical cues for bone TE applications. Our results highlight the importance of adequate choice of seeding method and its impact on developing tissue-engineered constructs. The application of this simple seeding technique is not only recommended for bone TE but can also be used for seeding similar porous scaffolds with hBMSCs in other TE fields.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteogênese , Engenharia Tecidual/métodos , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Resistência ao Cisalhamento , Alicerces Teciduais
3.
Biomech Model Mechanobiol ; 18(6): 1965-1977, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31201621

RESUMO

Mechanical stimulation can regulate cellular behavior, e.g., differentiation, proliferation, matrix production and mineralization. To apply fluid-induced wall shear stress (WSS) on cells, perfusion bioreactors have been commonly used in tissue engineering experiments. The WSS on cells depends on the nature of the micro-fluidic environment within scaffolds under medium perfusion. Simulating the fluidic environment within scaffolds will be important for gaining a better insight into the actual mechanical stimulation on cells in a tissue engineering experiment. However, biomaterial scaffolds used in tissue engineering experiments typically have highly irregular pore geometries. This complexity in scaffold geometry implies high computational costs for simulating the precise fluidic environment within the scaffolds. In this study, we propose a low-computational cost and feasible technique for quantifying the micro-fluidic environment within the scaffolds, which have highly irregular pore geometries. This technique is based on a multiscale computational fluid dynamics approach. It is demonstrated that this approach can capture the WSS distribution in most regions within the scaffold. Importantly, the central process unit time needed to run the model is considerably low.


Assuntos
Hidrodinâmica , Microfluídica , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Reatores Biológicos , Fibroínas/química , Perfusão , Permeabilidade , Porosidade , Estresse Mecânico
4.
Artigo em Inglês | MEDLINE | ID: mdl-30410879

RESUMO

A promising approach to overcome hypoxic conditions in tissue engineered constructs is to use the potential of endothelial cells (EC) to form networks in vitro when co-cultured with a supporting cell type in a 3D environment. Adipose tissue-derived stromal cells (ASC) as well as bone marrow-derived stromal cells (BMSC) have been shown to support vessel formation of EC in vitro, but only very few studies compared the angiogenic potential of both cell types using the same model. Here, we aimed at investigating the ability of ASC and BMSC to induce network formation of EC in a co-culture model in fibrin. While vascular structures of BMSC and EC remained stable over the course of 3 weeks, ASC-EC co-cultures developed more junctions and higher network density within the same time frame. Both co-cultures showed positive staining for neural glial antigen 2 (NG2) and basal lamina proteins. This indicates that vessels matured and were surrounded by perivascular cells as well as matrix molecules involved in stabilization. Gene expression analysis revealed a significant increase of vascular endothelial growth factor (VEGF) expression in ASC-EC co-culture compared to BMSC-EC co-culture. These observations were donor-independent and highlight the importance of organotypic cell sources for vascular tissue engineering.

5.
Acta Biomater ; 31: 1-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26360593

RESUMO

Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. STATEMENT OF SIGNIFICANCE: Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted.


Assuntos
Materiais Biocompatíveis/química , Osso e Ossos/fisiologia , Fibroínas/química , Engenharia Tecidual/métodos , Animais , Bioimpressão , Bombyx , Técnicas de Cocultura , Sistemas de Liberação de Medicamentos , Humanos , Hidrogéis/química , Osteogênese , Impressão Tridimensional , Proteínas Recombinantes/química , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA