Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
NPJ Parkinsons Dis ; 10(1): 105, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773124

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive motor symptoms and alpha-synuclein (αsyn) aggregation in the nervous system. For unclear reasons, PD patients with certain GBA1 mutations (GBA-PD) have a more aggressive clinical progression. Two testable hypotheses that can potentially account for this phenomenon are that GBA1 mutations promote αsyn spread or drive the generation of highly pathogenic αsyn polymorphs (i.e., strains). We tested these hypotheses by treating homozygous GBA1 D409V knockin (KI) mice with human α-syn-preformed fibrils (PFFs) and treating wild-type mice (WT) with several αsyn-PFF polymorphs amplified from brain autopsy samples collected from patients with idiopathic PD and GBA-PD patients with either homozygous or heterozygous GBA1 mutations. Robust phosphorylated-αsyn (PSER129) positive pathology was observed at the injection site (i.e., the olfactory bulb granule cell layer) and throughout the brain six months following PFF injection. The PFF seeding efficiency and degree of spread were similar regardless of the mouse genotype or PFF polymorphs. We found that PFFs amplified from the human brain, regardless of patient genotype, were generally more effective seeders than wholly synthetic PFFs (i.e., non-amplified); however, PFF concentration differed between these two studies, which might also account for the observed differences. To investigate whether the molecular composition of pathology differed between different seeding conditions, we performed Biotinylation by Antibody Recognition on PSER129 (BAR-PSER129). We found that for BAR-PSER129, the endogenous PSER129 pool dominated identified interactions, and thus, very few potential interactions were explicitly identified for seeded pathology. However, we found Dynactin Subunit 2 (Dctn2) interaction was shared across all PFF conditions, and NCK Associated Protein 1 (Nckap1) and Adaptor Related Protein Complex 3 Subunit Beta 2 (Ap3b2) were unique to PFFs amplified from GBA-PD brains of heterozygous mutation carriers. In conclusion, both the genotype and αsyn strain had little effect on overall seeding efficacy and global PSER129-interactions.

2.
ACS Chem Neurosci ; 15(10): 2080-2088, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690599

RESUMO

Amyloid fibrils are characteristic of many neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. While different diseases may have fibrils formed of the same protein, the supramolecular morphology of these fibrils is disease-specific. Here, a method is reported to distinguish eight morphologically distinct amyloid fibrils based on differences in ligand binding properties. Eight fibrillar polymorphs of α-synuclein (αSyn) were investigated: five generated de novo using recombinant αSyn and three generated using protein misfolding cyclic amplification (PMCA) of recombinant αSyn seeded with brain homogenates from deceased patients diagnosed with Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Fluorescence binding assays were carried out for each fibril using a toolkit of six different ligands. The fibril samples were separated into five categories based on a binary classification of whether they bound specific ligands or not. Quantitative binding measurements then allowed every fibrillar polymorph to be uniquely identified, and the PMCA fibrils derived from PD, MSA, and DLB patients could be unambiguously distinguished. This approach constitutes a novel and operationally simple method to differentiate amyloid fibril morphologies and to identify disease states using PMCA fibrils obtained by seeding with patient samples.


Assuntos
Amiloide , Doença de Parkinson , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/análise , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/diagnóstico , Amiloide/metabolismo , Amiloide/análise , Ligantes , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/diagnóstico , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/diagnóstico , Encéfalo/metabolismo
3.
Inflamm Res ; 73(4): 563-580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411635

RESUMO

BACKGROUND: Altered expression of vacuole membrane protein 1 (VMP1) has recently been observed in the context of multiple sclerosis and Parkinson's disease (PD). However, how changes in VMP1 expression may impact pathogenesis has not been explored. OBJECTIVE: This study aimed to characterize how altered VMP1 expression affects NLRP3 inflammasome activation and mitochondrial function. METHODS: VMP1 expression was depleted in a monocytic cell line using CRISPR-Cas9. The effect of VMP1 on NLRP3 inflammasome activation was examined by stimulating cells with LPS and ATP or α-synuclein fibrils. Inflammasome activation was determined by caspase-1 activation using both a FLICA assay and a biosensor as well as by the release of proinflammatory molecules measured by ELISA. RNA-sequencing was utilized to define global gene expression changes resulting from VMP1 deletion. SERCA activity and mitochondrial function were investigated using various fluorescence microscopy-based approaches including a novel method that assesses the function of individual mitochondria in a cell. RESULTS: Here, we report that genetic deletion of VMP1 from a monocytic cell line resulted in increased NLRP3 inflammasome activation and release of proinflammatory molecules. Examination of the VMP1-dependent changes in these cells revealed that VMP1 deficiency led to decreased SERCA activity and increased intracellular [Ca2+]. We also observed calcium overload in mitochondria in VMP1 depleted cells, which was associated with mitochondrial dysfunction and release of mitochondrial DNA into the cytoplasm and the extracellular environment. CONCLUSIONS: Collectively, these studies reveal VMP1 as a negative regulator of inflammatory responses, and we postulate that decreased expression of VMP1 can aggravate the inflammatory sequelae associated with neurodegenerative diseases like PD.


Assuntos
Inflamassomos , Doenças Mitocondriais , Humanos , Inflamassomos/metabolismo , Proteínas de Membrana/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vacúolos/metabolismo
4.
J Neuroinflammation ; 21(1): 54, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383421

RESUMO

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.


Assuntos
Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sinais (Psicologia) , Inflamação/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Neurotóxicas/metabolismo , Glutamatos/metabolismo , Ferro/metabolismo
5.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662402

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive motor symptoms and alpha-synuclein (αsyn) aggregation in the nervous system. For unclear reasons, PD patients with certain GBA mutations (GBA-PD) have a more aggressive clinical progression. Two testable hypotheses that can potentially account for this phenomenon are that GBA1 mutations promote αsyn spread or drive the generation of highly pathogenic αsyn polymorphs (i.e., strains). We tested these hypotheses by treating homozygous GBA1 D409V knockin (KI) mice with human α-syn-preformed fibrils (PFFs) and treating wild-type mice (WT) with several αsyn-PFF polymorphs amplified from brain autopsy samples collected from patients with idiopathic PD and GBA-PD patients with either homozygous or heterozygous GBA1 mutations. Robust phosphorylated-αsyn (PSER129) positive pathology was observed at the injection site (i.e., the olfactory bulb granular layer) and throughout the brain six months following PFF injection. The PFF seeding efficiency and degree of spread were similar regardless of the mouse genotype or PFF polymorphs. We found that PFFs amplified from the human brain, regardless of patient genotype, were generally more effective seeders than wholly synthetic PFFs (i.e., non-amplified); however, PFF concentration differed between these two studies, and this might also account for the observed differences. To investigate whether the molecular composition of pathology differed between different seeding conditions, we permed Biotinylation by Antibody Recognition on PSER129 (BAR-PSER129). We found that for BAR-PSER129, the endogenous PSER129 pool dominated identified interactions, and thus, very few potential interactions were explicitly identified for seeded pathology. However, we found Dctn2 interaction was shared across all PFF conditions, and Nckap1 and Ap3b2 were unique to PFFs amplified from GBA-PD brains of heterozygous mutation carriers. In conclusion, both the genotype and αsyn strain had little effect on overall seeding efficacy and global PSER129-interactions.

6.
Cell Mol Life Sci ; 80(10): 284, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688644

RESUMO

Alpha-synuclein (aSyn) aggregation spreads between cells and underlies the progression of neuronal lesions in the brain of patients with synucleinopathies such as Parkinson's diseases. The mechanisms of cell-to-cell propagation of aggregates, which dictate how aggregation progresses at the network level, remain poorly understood. Notably, while prion and prion-like spreading is often simplistically envisioned as a "domino-like" spreading scenario where connected neurons sequentially propagate protein aggregation to each other, the reality is likely to be more nuanced. Here, we demonstrate that the spreading of preformed aSyn aggregates is a limited process that occurs through molecular sieving of large aSyn seeds. We further show that this process is not facilitated by synaptic connections. This was achieved through the development and characterization of a new microfluidic platform that allows reconstruction of binary fully oriented neuronal networks in vitro with no unwanted backward connections, and through the careful quantification of fluorescent aSyn aggregates spreading between neurons. While this allowed us for the first time to extract quantitative data of protein seeds dissemination along neural pathways, our data suggest that prion-like dissemination of proteinopathic seeding aggregates occurs very progressively and leads to highly compartmentalized pattern of protein seeding in neural networks.


Assuntos
Príons , Sinucleinopatias , Humanos , alfa-Sinucleína , Sinapses , Redes Neurais de Computação
7.
Sci Adv ; 9(33): eadg5663, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585526

RESUMO

α-Synuclein (α-Syn) aggregation into fibrils with prion-like features is intimately associated with Lewy pathology and various synucleinopathies. Emerging studies suggest that α-Syn could form liquid condensates through phase separation. The role of these condensates in aggregation and disease remains elusive and the interplay between α-Syn fibrils and α-Syn condensates remains unexplored, possibly due to difficulties in triggering the formation of α-Syn condensates in cells. To address this gap, we developed an assay allowing the controlled assembly/disassembly of α-Syn condensates in cells and studied them upon exposure to preformed α-Syn fibrillar polymorphs. Fibrils triggered the evolution of liquid α-Syn condensates into solid-like structures displaying growing needle-like extensions and exhibiting pathological amyloid hallmarks. No such changes were elicited on α-Syn that did not undergo phase separation. We, therefore, propose a model where α-Syn within condensates fuels exogenous fibrillar seeds growth, thus speeding up the prion-like propagation of pathogenic aggregates.


Assuntos
Príons , alfa-Sinucleína , Amiloide/química
8.
NPJ Parkinsons Dis ; 9(1): 91, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322068

RESUMO

Prion-like transmission of pathology in α-synucleinopathies like Parkinson's disease or multiple system atrophy is increasingly recognized as one potential mechanism to address disease progression. Active and passive immunotherapies targeting insoluble, aggregated α-synuclein are already being actively explored in the clinic with mixed outcomes so far. Here, we report the identification of 306C7B3, a highly selective, aggregate-specific α-synuclein antibody with picomolar affinity devoid of binding to the monomeric, physiologic protein. 306C7B3 binding is Ser129-phosphorylation independent and shows high affinity to several different aggregated α-synuclein polymorphs, increasing the likelihood that it can also bind to the pathological seeds assumed to drive disease progression in patients. In support of this, highly selective binding to pathological aggregates in postmortem brains of MSA patients was demonstrated, with no staining in samples from other human neurodegenerative diseases. To achieve CNS exposure of 306C7B3, an adeno-associated virus (AAV) based approach driving expression of the secreted antibody within the brain of (Thy-1)-[A30P]-hα-synuclein mice was used. Widespread central transduction after intrastriatal inoculation was ensured by using the AAV2HBKO serotype, with transduction being spread to areas far away from the inoculation site. Treatment of (Thy-1)-[A30P]-hα-synuclein mice at the age of 12 months demonstrated significantly increased survival, with 306C7B3 concentration reaching 3.9 nM in the cerebrospinal fluid. These results suggest that AAV-mediated expression of 306C7B3, targeting extracellular, presumably disease-propagating aggregates of α-synuclein, has great potential as a disease-modifying therapy for α-synucleinopathies as it ensures CNS exposure of the antibody, thereby mitigating the selective permeability of the blood-brain barrier.

9.
Cell Mol Life Sci ; 80(7): 193, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391572

RESUMO

Extracellular vesicles (EVs) have emerged as key players in cell-to-cell communication in both physiological and pathological processes in the Central Nervous System. Thus far, the intracellular pathways involved in uptake and trafficking of EVs within different cell types of the brain are poorly understood. In our study, the endocytic processes and subcellular sorting of EVs were investigated in primary glial cells, particularly linked with the EV-associated α-synuclein (α-syn) transmission. Mouse microglia and astrocytic primary cultures were incubated with DiI-stained mouse brain-derived EVs. The internalization and trafficking pathways were analyzed in cells treated with pharmacological reagents that block the major endocytic pathways. Brain-derived EVs were internalized by both glial cell types; however, uptake was more efficient in microglia than in astrocytes. Colocalization of EVs with early and late endocytic markers (Rab5, Lamp1) indicated that EVs are sorted to endo-lysosomes for subsequent processing. Blocking actin-dependent phagocytosis and/or macropinocytosis with Cytochalasin D or EIPA inhibited EV entry into glial cells, whereas treatment with inhibitors that strip cholesterol off the plasma membrane, induced uptake, however differentially altered endosomal sorting. EV-associated fibrillar α-Syn was efficiently internalized and detected in Rab5- and Lamp1-positive compartments within microglia. Our study strongly suggests that EVs enter glial cells through phagocytosis and/or macropinocytosis and are sorted to endo-lysosomes for subsequent processing. Further, brain-derived EVs serve as scavengers and mediate cell-to-glia transfer of pathological α-Syn which is also targeted to the endolysosomal pathway, suggesting a beneficial role in microglia-mediated clearance of toxic protein aggregates, present in numerous neurodegenerative diseases.


Assuntos
Astrócitos , Endometriose , Animais , Camundongos , Feminino , Humanos , Microglia , Neuroglia , Sistema Nervoso Central , Transporte Biológico
10.
Structure ; 31(6): 644-650.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119819

RESUMO

Huntington's disease neurodegeneration occurs when the number of consecutive glutamines in the huntingtin exon-1 (HTTExon1) exceeds a pathological threshold of 35. The sequence homogeneity of HTTExon1 reduces the signal dispersion in NMR spectra, hampering its structural characterization. By simultaneously introducing three isotopically labeled glutamines in a site-specific manner in multiple concatenated samples, 18 glutamines of a pathogenic HTTExon1 with 36 glutamines were unambiguously assigned. Chemical shift analyses indicate the α-helical persistence in the homorepeat and the absence of an emerging toxic conformation around the pathological threshold. Using the same type of samples, the recognition mechanism of Hsc70 molecular chaperone has been investigated, indicating that it binds to the N17 region of HTTExon1, inducing the partial unfolding of the poly-Q. The proposed strategy facilitates high-resolution structural and functional studies in low-complexity regions.


Assuntos
Peptídeos , Peptídeos/química , Éxons , Conformação Proteica em alfa-Hélice , Espectroscopia de Ressonância Magnética , Proteína Huntingtina/química
11.
Neurobiol Dis ; 180: 106086, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933673

RESUMO

The role of alpha-synuclein in Parkinson's disease has been heavily investigated since its discovery as a component of Lewy bodies. Recent rodent data demonstrate that alpha-synuclein strain structure is critical for differential propagation and toxicity. Based on these findings, we have compared, for the first time, in this pilot study, the capacity of two alpha-synuclein strains and patient-derived Lewy body extracts to model synucleinopathies after intra-putaminal injection in the non-human primate brain. Functional alterations triggered by these injections were evaluated in vivo using glucose positron emission tomography imaging. Post-mortem immunohistochemical and biochemical analyses were used to detect neuropathological alterations in the dopaminergic system and alpha-synuclein pathology propagation. In vivo results revealed a decrease in glucose metabolism more pronounced in alpha-synuclein strain-injected animals. Histology showed a decreased number of dopaminergic tyrosine hydroxylase-positive cells in the substantia nigra to different extents according to the inoculum used. Biochemistry revealed that alpha-synuclein-induced aggregation, phosphorylation, and propagation in different brain regions are strain-specific. Our findings show that distinct alpha-synuclein strains can induce specific patterns of synucleinopathy in the non-human primate, changes in the nigrostriatal pathway, and functional alterations that resemble early-stage Parkinson's disease.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Projetos Piloto , Corpos de Lewy/metabolismo , Sinucleinopatias/patologia , Substância Negra/metabolismo , Dopamina/metabolismo , Primatas/metabolismo
12.
Res Sq ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747822

RESUMO

Altered expression of vacuole membrane protein 1 (VMP1) has recently been observed in the context of multiple sclerosis and Parkinson's disease (PD). However, how changes in VMP1 expression may impact pathogenesis has not been explored. Here, we report that genetic deletion of VMP1 from a monocytic cell line resulted in increased NLRP3 inflammasome activation and release of proinflammatory molecules. Examination of the VMP1 dependent changes in these cells revealed that VMP1 deficiency led to decreased SERCA activity and increased intracellular [Ca2+]. We also observed calcium overload in mitochondria in VMP1 depleted cells, which was associated with mitochondrial dysfunction and release of mitochondrial DNA into the cytoplasm and the extracellular environment. Autophagic defects were also observed in VMP1 depleted macrophages. Collectively, these studies reveal VMP1 as a negative regulator of inflammatory responses, and we postulate that decreased expression of VMP1 can aggravate the inflammatory sequelae associated with neurodegenerative diseases like PD.

13.
Cell Mol Life Sci ; 80(2): 45, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36651994

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder resulting from a CAG expansion in the huntingtin (HTT) gene, which leads to the production and accumulation of mutant huntingtin (mHTT). While primarily considered a disorder of the central nervous system, multiple changes have been described to occur throughout the body, including activation of the immune system. In other neurodegenerative disorders, activation of the immune system has been shown to include the production of antibodies against disease-associated pathological proteins. However, the existence of mHTT-targeted antibodies has never been reported. In this study, we assessed the presence and titer of antibodies recognizing HTT/mHTT in patients with HD (n = 66) and age- and gender-matched healthy controls (n = 66) using a combination of Western blotting and ELISA. Together, these analyses revealed that antibodies capable of recognizing HTT/mHTT were detectable in the plasma samples of all participants, including healthy controls. When antibody levels were monitored at different disease stages, it was observed that antibodies against full-length mHTT were highest in patients with severe disease while antibodies against HTTExon1 were elevated in patients with mild disease. Combined, these results suggest that antibodies detecting different forms of mHTT peak at different disease stages.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Anticorpos
15.
Methods Mol Biol ; 2551: 345-355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310214

RESUMO

The human α-synuclein protein, identified as one of the main markers of Parkinson's disease, is a 140-amino acid thermostable protein that can easily be overexpressed in E. coli. The purification protocol determines the ability of the protein to assemble into amyloid fibrils of well-defined structures. Here, we describe the purification and assembly protocols to obtain three well-characterized amyloid forms (ribbon, fibrils, and fibril-91) used to assess their activity in biochemical and cellular assays or to investigate their atomic structure by cryo-electron microscopy and solid-state NMR.


Assuntos
Amiloidose , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Amiloide/química , Doença de Parkinson/metabolismo , Proteínas Amiloidogênicas
16.
Methods Mol Biol ; 2551: 357-378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310215

RESUMO

Aggregated alpha-synuclein (α-Syn) in neurons is a hallmark of Parkinson's disease (PD) and other synucleinopathies. Recent advances (1) in the production and purification of synthetic assemblies of α-Syn, (2) in the design and production of microfluidic devices allowing the construction of oriented and compartmentalized neuronal network on a chip, and (3) in the differentiation of human pluripotent stem cells (hPSCs) into specific neuronal subtypes now allow the study of cellular and molecular determinants of the prion-like properties of α-Syn in vitro. Here, we described the methods we used to reconstruct a cortico-cortical human neuronal network in microfluidic devices and how to take advantage of this cellular model to characterize (1) the prion-like properties of different α-Syn strains and (2) the neuronal dysfunctions and the alterations associated with the exposure to α-Syn strains or the nucleation of endogenous α-Syn protein in vitro.


Assuntos
Doença de Parkinson , Príons , Sinucleinopatias , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Príons/metabolismo
17.
Brain ; 146(1): 237-251, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170728

RESUMO

Multiple system atrophy is a progressive neurodegenerative disease with prominent autonomic and motor features. During early stages, different subtypes of the disease are distinguished by their predominant parkinsonian or cerebellar symptoms, reflecting its heterogeneous nature. The pathognomonic feature of multiple system atrophy is the presence of α-synuclein (αSyn) protein deposits in oligodendroglial cells. αSyn can assemble in specific cellular or disease environments and form αSyn strains with unique structural features, but the ability of αSyn strains to propagate in oligodendrocytes remains elusive. Recently, it was shown that αSyn strains with related conformations exist in the brains of patients. Here, we investigated whether different αSyn strains can influence multiple system atrophy progression in a strain-dependent manner. To this aim, we injected two recombinant αSyn strains (fibrils and ribbons) in multiple system atrophy transgenic mice and found that they determined disease severity in multiple system atrophy via host-restricted and cell-specific pathology in vivo. αSyn strains significantly impact disease progression in a strain-dependent way via oligodendroglial, neurotoxic and immune-related mechanisms. Neurodegeneration and brain atrophy were accompanied by unique microglial and astroglial responses and the recruitment of central and peripheral immune cells. The differential activation of microglial cells correlated with the structural features of αSyn strains both in vitro and in vivo. Spectral analysis showed that ribbons propagated oligodendroglial inclusions that were structurally distinct from those of fibrils, with resemblance to oligodendroglial inclusions, in the brains of patients with multiple system atrophy. This study, therefore, shows that the multiple system atrophy phenotype is governed by both the nature of the αSyn strain and the host environment and that by injecting αSyn strains into an animal model of the disease, a more comprehensive phenotype can be established.


Assuntos
Atrofia de Múltiplos Sistemas , alfa-Sinucleína , Camundongos , Animais , alfa-Sinucleína/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Gravidade do Paciente , Encéfalo/patologia
18.
Brain ; 146(1): 149-166, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298632

RESUMO

Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Huntington/genética , Astrócitos/metabolismo , Proteostase , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
19.
Commun Biol ; 5(1): 1345, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36477485

RESUMO

Synucleinopathies are a heterogenous group of neurodegenerative diseases characterized by the progressive accumulation of pathological α-synuclein (α-Syn). The importance of structural polymorphism of α-Syn assemblies for distinct synucleinopathies and their progression is increasingly recognized. However, the underlying mechanisms are poorly understood. Here we use fluorescence lifetime imaging microscopy (FLIM) to investigate seeded aggregation of α-Syn in a biosensor cell line. We show that conformationally distinct α-Syn polymorphs exhibit characteristic fluorescence lifetimes. FLIM further revealed that α-Syn polymorphs were differentially processed by cellular clearance pathways, yielding fibrillar species with increased seeding capacity. Thus, FLIM is not only a powerful tool to distinguish different amyloid structures, but also to monitor the dynamic process of amyloid remodeling by the cellular environment. Our data suggest that the accumulation of highly seeding competent degradation products for particular polymorphs may account for accelerated disease progression in some patients.


Assuntos
alfa-Sinucleína , Humanos , alfa-Sinucleína/genética
20.
Cell Rep ; 41(6): 111631, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351406

RESUMO

An emerging view regarding neurodegenerative diseases is that discreet seeding of misfolded proteins leads to widespread pathology. However, the mechanisms by which misfolded proteins seed distinct brain regions and cause differential whole-brain pathology remain elusive. We used whole-brain tissue clearing and high-resolution imaging to longitudinally map pathology in an α-synuclein pre-formed fibril injection model of Parkinson's disease. Cleared brains at different time points of disease progression were quantitatively segmented and registered to a standardized atlas, revealing distinct phases of spreading and decline. We then fit a computational model with parameters that represent α-synuclein pathology spreading, aggregation, decay, and gene expression pattern to this longitudinal dataset. Remarkably, our model can generalize to predicting α-synuclein spreading patterns from several distinct brain regions and can even estimate their origins. This model empowers mechanistic understanding and accurate prediction of disease progression, paving the way for the development and testing of therapeutic interventions.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Progressão da Doença , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA