Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944540

RESUMO

The vertebrate neuromuscular junction (NMJ) is formed by a presynaptic motor nerve terminal and a postsynaptic muscle specialization. Cumulative evidence reveals that Wnt ligands secreted by the nerve terminal control crucial steps of NMJ synaptogenesis. For instance, the Wnt3 ligand is expressed by motor neurons at the time of NMJ formation and induces postsynaptic differentiation in recently formed muscle fibers. However, the behavior of presynaptic-derived Wnt ligands at the vertebrate NMJ has not been deeply analyzed. Here, we conducted overexpression experiments to study the expression, distribution, secretion, and function of Wnt3 by transfection of the motor neuron-like NSC-34 cell line and by in ovo electroporation of chick motor neurons. Our findings reveal that Wnt3 is transported along motor axons in vivo following a vesicular-like pattern and reaches the NMJ area. In vitro, we found that endogenous Wnt3 expression increases as the differentiation of NSC-34 cells proceeds. Although NSC-34 cells overexpressing Wnt3 do not modify their morphological differentiation towards a neuronal phenotype, they effectively induce acetylcholine receptor clustering on co-cultured myotubes. These findings support the notion that presynaptic Wnt3 is transported and secreted by motor neurons to induce postsynaptic differentiation in nascent NMJs.


Assuntos
Neurônios Motores/citologia , Proteína Wnt3/genética , Proteína Wnt3/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Embrião de Galinha , Técnicas de Cocultura , Eletroporação , Ligantes , Camundongos , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo
2.
Acta Neuropathol Commun ; 9(1): 21, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541434

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that affects motoneurons. Mutations in superoxide dismutase 1 (SOD1) have been described as a causative genetic factor for ALS. Mice overexpressing ALS-linked mutant SOD1 develop ALS symptoms accompanied by histopathological alterations and protein aggregation. The protein disulfide isomerase family member ERp57 is one of the main up-regulated proteins in tissue of ALS patients and mutant SOD1 mice, whereas point mutations in ERp57 were described as possible risk factors to develop the disease. ERp57 catalyzes disulfide bond formation and isomerization in the endoplasmic reticulum (ER), constituting a central component of protein quality control mechanisms. However, the actual contribution of ERp57 to ALS pathogenesis remained to be defined. Here, we studied the consequences of overexpressing ERp57 in experimental ALS using mutant SOD1 mice. Double transgenic SOD1G93A/ERp57WT animals presented delayed deterioration of electrophysiological activity and maintained muscle innervation compared to single transgenic SOD1G93A littermates at early-symptomatic stage, along with improved motor performance without affecting survival. The overexpression of ERp57 reduced mutant SOD1 aggregation, but only at disease end-stage, dissociating its role as an anti-aggregation factor from the protection of neuromuscular junctions. Instead, proteomic analysis revealed that the neuroprotective effects of ERp57 overexpression correlated with increased levels of synaptic and actin cytoskeleton proteins in the spinal cord. Taken together, our results suggest that ERp57 operates as a disease modifier at early stages by maintaining motoneuron connectivity.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/prevenção & controle , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Eletromiografia , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Denervação Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Proteômica , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
3.
Front Cell Neurosci ; 14: 225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848618

RESUMO

The neuromuscular junction (NMJ) is the peripheral synapse that controls the coordinated movement of many organisms. The NMJ is also an archetypical model to study synaptic morphology and function. As the NMJ is the primary target of neuromuscular diseases and traumatic injuries, the establishment of suitable models to study the contribution of specific postsynaptic muscle-derived proteins on NMJ maintenance and regeneration is a permanent need. Considering the unique experimental advantages of the levator auris longus (LAL) muscle, here we present a method allowing for efficient electroporation-mediated gene transfer and subsequent detailed studies of the morphology and function of the NMJ and muscle fibers. Also, we have standardized efficient facial nerve injury protocols to analyze LAL muscle NMJ degeneration and regeneration. Our results show that the expression of a control fluorescent protein does not alter either the muscle structural organization, the apposition of the pre- and post-synaptic domains, or the functional neurotransmission parameters of the LAL muscle NMJs; in turn, the overexpression of MuSK, a major regulator of postsynaptic assembly, induces the formation of ectopic acetylcholine receptor clusters. Our NMJ denervation experiments showed complete reinnervation of LAL muscle NMJs four weeks after facial nerve injury. Together, these experimental strategies in the LAL muscle constitute effective methods to combine protein expression with accurate analyses at the levels of structure, function, and regeneration of the NMJ.

4.
Neuromuscul Disord ; 29(7): 533-542, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31230871

RESUMO

Acetylcholine receptor (AChR) clustering on the surface of muscle cells is a hallmark of postsynaptic differentiation at the vertebrate neuromuscular junction (NMJ). Even though the assembly of complex postsynaptic apparatuses is known to rely on both, pre- and postsynaptic signals, the identity of muscle-derived proteins modulating postsynaptic assembly and maintenance is still to be fully elucidated. Efficient gene transfer into muscle cells represents a powerful tool to analyze the contribution of muscle proteins on postsynaptic assembly and maintenance. Here, we describe a protocol that combines efficient electroporation of primary muscle satellite cells with the formation of aneural complex postsynaptic structures on the surface of myotubes. In vitro formed postsynaptic structures share various similarities with in vivo postsynaptic NMJ domains. While primary myotubes express increasing amounts of the ε AChR subunit, associated with NMJ maturation, surface AChR aggregates lack this AChR subunit. Our results also validate the functional expression of a luciferase reporter gene, as well as the response of complex postsynaptic structures to pharmacological treatment. Together, these methods in primary muscle cells are a valuable tool to perform a detailed and accurate analysis of the potential role of muscle-derived proteins on the maintenance of complex postsynaptic structures and to identify nerve-derived signals regulating functional NMJ maturation.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas de Transferência de Genes , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Animais , Diferenciação Celular/genética , Sobrevivência Celular , DNA/genética , Eletroporação , Mioblastos , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Cultura Primária de Células , Ratos , Receptores Colinérgicos/metabolismo , Células Satélites de Músculo Esquelético
5.
J Cell Biol ; 218(4): 1118-1127, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787040

RESUMO

Cells respond to stress in the ER by initiating the widely conserved unfolded protein response. Activation of the ER transmembrane nuclease IRE1 leads to the degradation of specific mRNAs, but how this pathway affects the ability of cells to recover from stress is not known. Here, we show that degradation of the mRNA encoding biogenesis of lysosome-related organelles 1 subunit 1 (Blos1) leads to the repositioning of late endosomes (LEs)/lysosomes to the microtubule-organizing center in response to stress in mouse cells. Overriding Blos1 degradation led to ER stress sensitivity and the accumulation of ubiquitinated protein aggregates, whose efficient degradation required their independent trafficking to the cell center and the LE-associated endosomal sorting complexes required for transport. We propose that Blos1 regulation by IRE1 promotes LE-mediated microautophagy of protein aggregates and protects cells from their cytotoxic effects.


Assuntos
Estresse do Retículo Endoplasmático , Endossomos/enzimologia , Fibroblastos/enzimologia , Lisossomos/enzimologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Células 3T3 , Animais , Endossomos/genética , Endossomos/patologia , Fibroblastos/patologia , Lisossomos/genética , Lisossomos/patologia , Proteínas de Membrana/genética , Camundongos , Microautofagia , Proteínas Mitocondriais , Proteínas do Tecido Nervoso/genética , Agregados Proteicos , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA