Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2314319, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461367

RESUMO

Emerging single-molecule protein sensing techniques are ushering in a transformative era in biomedical research. Nevertheless, challenges persist in realizing ultra-fast full-length protein sensing, including loss of molecular integrity due to protein fragmentation, biases introduced by antibodies affinity, identification of proteoforms, and low throughputs. Here, a single-molecule method for parallel protein separation and tracking is introduced, yielding multi-dimensional molecular properties used for their identification. Proteins are tagged by chemo-selective dual amino-acid specific labels and are electrophoretically separated by their mass/charge in custom-designed thin silicon channel with subwavelength height. This approach allows analysis of thousands of individual proteins within a few minutes by tracking their motion during the migration. The power of the method is demonstrated by quantifying a cytokine panel for host-response discrimination between viral and bacterial infections. Moreover, it is shown that two clinically-relevant splice isoforms of Vascular endothelial growth factor (VEGF) can be accurately quantified from human serum samples. Being non-destructive and compatible with full-length intact proteins, this method opens up ways for antibody-free single-protein molecule quantification.

2.
Nano Lett ; 23(10): 4609-4616, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37149783

RESUMO

Solid-state nanopores (ssNPs) are single-molecule sensors capable of label-free quantification of different biomolecules, which have become highly versatile with the introduction of different surface treatments. By modulating the surface charges of the ssNP, the electro-osmotic flow (EOF) can be controlled in turn affecting the in-pore hydrodynamic forces. Herein, we demonstrate that negative charge surfactant coating to ssNPs generates EOF that slows-down DNA translocation speed by >30-fold, without deterioration of the NP noise, hence significantly improving its performances. Consequently, surfactant-coated ssNPs can be used to reliably sense short DNA fragments at high voltage bias. To shed light on the EOF phenomena inside planar ssNPs, we introduce visualization of the electrically neutral fluorescent molecule's flow, hence decoupling the electrophoretic from EOF forces. Finite elements simulations are then used to show that EOF is likely responsible for in-pore drag and size-selective capture rate. This study broadens ssNPs use for multianalyte sensing in a single device.


Assuntos
DNA , Nanoporos , Eletricidade , Tensoativos , Nanotecnologia
3.
Nat Nanotechnol ; 17(11): 1136-1146, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36163504

RESUMO

Inspired by the biological processes of molecular recognition and transportation across membranes, nanopore techniques have evolved in recent decades as ultrasensitive analytical tools for individual molecules. In particular, nanopore-based single-molecule DNA/RNA sequencing has advanced genomic and transcriptomic research due to the portability, lower costs and long reads of these methods. Nanopore applications, however, extend far beyond nucleic acid sequencing. In this Review, we present an overview of the broad applications of nanopores in molecular sensing and sequencing, chemical catalysis and biophysical characterization. We highlight the prospects of applying nanopores for single-protein analysis and sequencing, single-molecule covalent chemistry, clinical sensing applications for single-molecule liquid biopsy, and the use of synthetic biomimetic nanopores as experimental models for natural systems. We suggest that nanopore technologies will continue to be explored to address a number of scientific challenges as control over pore design improves.


Assuntos
Nanoporos , Análise de Sequência de DNA/métodos , Sequência de Bases , Nanotecnologia/métodos
4.
ACS Nano ; 16(7): 11405-11414, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35785960

RESUMO

The ability to routinely identify and quantify the complete proteome from single cells will greatly advance medicine and basic biology research. To meet this challenge of single-cell proteomics, single-molecule technologies are being developed and improved. Most approaches, to date, rely on the analysis of polypeptides, resulting from digested proteins, either in solution or immobilized on a surface. Nanopore biosensing is an emerging single-molecule technique that circumvents surface immobilization and is optimally suited for the analysis of long biopolymers, as has already been shown for DNA sequencing. However, proteins, unlike DNA molecules, are not uniformly charged and harbor complex tertiary structures. Consequently, the ability of nanopores to analyze unfolded full-length proteins has remained elusive. Here, we evaluate the use of heat denaturation and the anionic surfactant sodium dodecyl sulfate (SDS) to facilitate electrokinetic nanopore sensing of unfolded proteins. Specifically, we characterize the voltage dependence translocation dynamics of a wide molecular weight range of proteins (from 14 to 130 kDa) through sub-5 nm solid-state nanopores, using a SDS concentration below the critical micelle concentration. Our results suggest that proteins' translocation dynamics are significantly slower than expected, presumably due to the smaller nanopore diameters used in our study and the role of the electroosmotic force opposing the translocation direction. This allows us to distinguish among the proteins of different molecular weights based on their dwell time and electrical charge deficit. Given the simplicity of the protein denaturation assay and circumvention of the tailor-made necessities for sensing protein of different folded sizes, shapes, and charges, this approach can facilitate the development of a whole proteome identification technique.


Assuntos
Nanoporos , Proteoma , DNA/química , Eletro-Osmose , Nanotecnologia
5.
Nanoscale ; 14(13): 4977-4986, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35258059

RESUMO

The majority of RNA based COVID-19 diagnostics employ enzymatic amplification to achieve high sensitivity, but this relies on arbitrary thresholding, which complicates the comparison of test results and may lead to false outcomes. Here we introduce solid-state nanopore sensing for label-free quantification of SARS-CoV-2 RNA in clinical nasal swab samples. This PCR-free method involves reverse transcribing a target gene on the viral RNA before enzymatically digesting all but the resulting dsDNA. Ratiometric quantification of RNA abundance is achieved by single-molecule counting and length-based nanopore identification of dsDNA from a SARS-CoV-2 gene and a human reference gene. We graded nasal swab samples from >15 subjects and find that the SARS-CoV-2 ratiometric nanopore index correlates well with the reported RT-qPCR threshold cycle for positive classified samples. Remarkably, nanopore analysis also reports quantitative positive outcomes for clinical samples classified as negative by RT-qPCR, suggesting that the method may be used to diagnose COVID-19 in samples that may evade detection. We show that the sample preparation workflow can be implemented using a compact microfluidic device with integrated thermal control for semi-automated processing of extremely small sample volumes, offering a viable route towards automated, fast and affordable RNA quantification in a small and portable device.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
6.
Mol Cell ; 82(2): 237-238, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063092

RESUMO

Novel techniques for single-protein molecule sequencing are rapidly becoming the focus of contemporary biomedical research. Here, Brinkerhoff et al. (2021) report a significant progress in nanopore-based rereading of DNA-peptide conjugates.


Assuntos
Nanoporos , DNA , Nanotecnologia , Proteômica , Análise de Sequência de DNA
7.
iScience ; 25(1): 103554, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34977508

RESUMO

Single biomolecule sensing often requires the quantification of multiple fluorescent species. Here, we theoretically and experimentally use time-resolved fluorescence via Time Correlated Single Photon Counting (TCSPC) to accurately quantify fluorescent species with similar chromatic signatures. A modified maximum likelihood estimator is introduced to include two fluorophore species, with compensation of the instrument response function. We apply this algorithm to simulated data of a simplified two-fluorescent species model, as well as to experimental data of fluorophores' mixtures and to a model protein, doubly labeled with different fluorophores' ratio. We show that 100 to 200 photons per fluorophore, in a 10-ms timescale, are sufficient to provide an accurate estimation of the dyes' ratio on the model protein. Our results provide estimation for the desired photon integration time toward implementation of TCSPC in systems with fast occurring events, such as translocation of biomolecules through nanopores or single-molecule burst analyses experiments.

8.
iScience ; 24(10): 103161, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34693220
9.
ACS Nano ; 15(7): 12189-12200, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34219449

RESUMO

Nanopores are single-molecule sensors capable of detecting and quantifying a broad range of unlabeled biomolecules including DNA and proteins. Nanopores' generic sensing principle has permitted the development of a vast range of biomolecular applications in genomics and proteomics, including single-molecule DNA sequencing and protein fingerprinting. Owing to their superior mechanical and electrical stability, many of the recent studies involved synthetic nanopores fabricated in thin solid-state membranes such as freestanding silicon nitride. However, to date, one of the bottlenecks in this field is the availability of a fast, reliable, and deterministic fabrication method capable of repeatedly forming small nanopores (i.e., sub 5 nm) in situ. Recently, it was demonstrated that a tightly focused laser beam can induce controlled etching of silicon nitride membranes suspended in buffered aqueous solutions. Herein, we demonstrate that nanopore laser drilling (LD) can produce nanopores deterministically to a prespecified size without user intervention. By optimizing the optical apparatus, and by designing a multistep control algorithm for the LD process, we demonstrate a fully automatic fabrication method for any user-defined nanopore size within minutes. The LD process results in a double bowl-shaped structure having a typical size of the laser point-spread function (PSF) at its openings. Numerical simulations of the characteristic LD nanopore shape provide conductance curves that fit the experimental result and support the idea that the pore is produced at the thinnest area formed by the back-to-back facings bowls. The presented LD fabrication method significantly enhances nanopore fabrication throughput and accuracy and hence can be adopted for a large range of biomolecular sensing applications.


Assuntos
Nanoporos , Retroalimentação , Compostos de Silício , Lasers
10.
Nat Methods ; 18(6): 604-617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099939

RESUMO

Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.


Assuntos
Análise de Sequência de Proteína/métodos , Imagem Individual de Molécula/métodos , Espectrometria de Massas/métodos , Nanotecnologia , Proteínas/química , Proteômica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
11.
Clin Chem ; 67(5): 753-762, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33496315

RESUMO

BACKGROUND: Circulating tumor DNAs (ctDNAs) are highly promising cancer biomarkers, potentially applicable for noninvasive liquid biopsy and disease monitoring. However, to date, sequencing of ctDNAs has proven to be challenging primarily due to small sample size and high background of fragmented cell-free DNAs (cfDNAs) derived from normal cells in the circulation, specifically in early stage cancer. METHODS: Solid-state nanopores (ssNPs) have recently emerged as a highly efficient tool for single-DNA sensing and analysis. Herein, we present a rapid nanopore genotyping strategy to enable an amplification-free identification and classification of ctDNA mutations. A biochemical ligation detection assay was used for the creation of specific fluorescently-labelled short DNA reporter molecules. Color conjugation with multiple fluorophores enabled a unique multi-color signature for different mutations, offering multiplexing potency. Single-molecule readout of the fluorescent labels was carried out by electro-optical sensing via solid-state nanopores drilled in titanium oxide membranes. RESULTS: As proof of concept, we utilized our method to detect the presence of low-quantity ERBB2 F310S and PIK3Ca H1047R breast cancer mutations from both plasmids and xenograft mice blood samples. We demonstrated an ability to distinguish between a wild type and a mutated sample, and between the different mutations in the same sample. CONCLUSIONS: Our method can potentially enable rapid and low cost ctDNA analysis that completely circumvents PCR amplification and library preparation. This approach will thus meet a currently unmet demand in terms of sensitivity, multiplexing and cost, opening new avenues for early diagnosis of cancer.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Nanoporos , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , DNA Tumoral Circulante/genética , DNA de Neoplasias/genética , Feminino , Humanos , Camundongos , Mutação , Nucleotídeos
12.
ACS Nano ; 14(10): 13964-13974, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32930583

RESUMO

RNA quantification methods are broadly used in life science research and in clinical diagnostics. Currently, real-time reverse transcription polymerase chain reaction (RT-qPCR) is the most common analytical tool for RNA quantification. However, in cases of rare transcripts or inhibiting contaminants in the sample, an extensive amplification could bias the copy number estimation, leading to quantification errors and false diagnosis. Single-molecule techniques may bypass amplification but commonly rely on fluorescence detection and probe hybridization, which introduces noise and limits multiplexing. Here, we introduce reverse transcription quantitative nanopore sensing (RT-qNP), an RNA quantification method that involves synthesis and single-molecule detection of gene-specific cDNAs without the need for purification or amplification. RT-qNP allows us to accurately quantify the relative expression of metastasis-associated genes MACC1 and S100A4 in nonmetastasizing and metastasizing human cell lines, even at levels for which RT-qPCR quantification produces uncertain results. We further demonstrate the versatility of the method by adapting it to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA against a human reference gene. This internal reference circumvents the need for producing a calibration curve for each measurement, an imminent requirement in RT-qPCR experiments. In summary, we describe a general method to process complicated biological samples with minimal losses, adequate for direct nanopore sensing. Thus, harnessing the sensitivity of label-free single-molecule counting, RT-qNP can potentially detect minute expression levels of RNA biomarkers or viral infection in the early stages of disease and provide accurate amplification-free quantification.


Assuntos
Técnicas Biossensoriais/métodos , Nanoporos , RNA Mensageiro/análise , Imagem Individual de Molécula/métodos , Betacoronavirus/genética , Técnicas Biossensoriais/normas , Células HCT116 , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , SARS-CoV-2 , Imagem Individual de Molécula/normas , Transativadores/genética , Transativadores/metabolismo
13.
Sci Rep ; 10(1): 15313, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943759

RESUMO

Accurate identification of both abundant and rare proteins hinges on the development of single-protein sensing methods. Given the immense variation in protein expression levels in a cell, separation of proteins by weight would improve protein classification strategies. Upstream separation facilitates sample binning into smaller groups while also preventing sensor overflow, as may be caused by highly abundant proteins in cell lysates or clinical samples. Here, we scale a bulk analysis method for protein separation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), to the single-molecule level using single-photon sensitive widefield imaging. Single-molecule sensing of the electrokinetically moving proteins is achieved by in situ polymerization of the PAGE in a low-profile fluidic channel having a depth of only ~ 0.6 µm. The polyacrylamide gel restricts the Brownian kinetics of the proteins, while the low-profile channel ensures that they remain in focus during imaging, allowing video-rate monitoring of single-protein migration. Calibration of the device involves separating a set of Atto647N-covalently labeled recombinant proteins in the size range of 14-70 kDa, yielding an exponential dependence of the proteins' molecular weights on the measured mobilities, as expected. Subsequently, we demonstrate the ability of our fluidic device to separate and image thousands of proteins directly extracted from a human cancer cell line. Using single-particle image analysis methods, we created detailed profiles of the separation kinetics of lysine and cysteine -labeled proteins. Downstream coupling of the device to single-protein identification sensors may provide superior protein classification and improve our ability to analyze complex biological and medical protein samples.


Assuntos
Análise Serial de Proteínas/métodos , Proteínas/química , Resinas Acrílicas/química , Calibragem , Linhagem Celular Tumoral , Cisteína/química , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Lisina/química , Peso Molecular , Neoplasias/patologia , Proteômica , Dodecilsulfato de Sódio/química
14.
Nanoscale ; 12(34): 17805-17811, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32820758

RESUMO

Solid-state nanopores (NPs) are label-free single-molecule sensors, capable of performing highly sensitive assays from a small number of biomolecule translocation events. However, single-molecule sensing is challenging at extremely low analyte concentrations due to the limited flux of analytes to the sensing volume. This leads to a low event rate and increases the overall assay time. In this work, we present a method to enhance the event rate at low analyte concentrations by using isotachophoresis (ITP) to focus and deliver analytes to a nanopore sensor. Central to this method is a device capable of performing ITP focusing directly on a solid-state NP chip, while preventing the focusing electric field from damaging the nanopore membrane. We discuss considerations and trade-offs related to the design of the focusing channel, the ITP electrolyte system and electrical decoupling between the focusing and sensing modes. Finally, we demonstrate an integrated device wherein the concentration enhancement due to ITP focusing leads to an increase in event rate of >300-fold in the ITP-NP device as compared to the NP-only case.


Assuntos
Isotacoforese , Nanoporos , Dispositivos Lab-On-A-Chip , Nanotecnologia , Análise de Sequência com Séries de Oligonucleotídeos
15.
Opt Lett ; 45(10): 2712-2715, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32412448

RESUMO

We present a parallel stimulated emission depletion (STED) nanoscope with no mechanical moving parts and sub-millisecond pixel dwell times, relying on electro-optical (EO) phase modulators. The nanoscope offers 1225-fold parallelization over single-doughnut-scanning STED and achieves a spatial resolution of 35 nm. We imaged immunostained nuclear pore complexes of zebrafish within their natural biological environment, demonstrating spatial and temporal resolutions of 56 nm and 0.2 s, respectively. Furthermore, we show parallel EO-STED sub-second imaging of microtubules inside living cells. Finally, we reveal the nanodomain organization of a eukaryotic initiation factor within the processing bodies of fixed cells. The potential of parallel EO-STED to offer microsecond pixel dwell times over large fields of view promises millisecond STED imaging.


Assuntos
Imagem Óptica , Linhagem Celular , Humanos , Fatores de Tempo
16.
ACS Nano ; 13(12): 14388-14398, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31756076

RESUMO

Solid-state nanopore sensing of ultralong genomic DNA molecules has remained challenging, as the DNA must be controllably delivered by its leading end for efficient entry into the nanopore. Herein, we introduce a nanopore sensor device designed for electro-optical detection and sorting of ultralong (300+ kilobase pair) genomic DNA. The fluidic device, fabricated in-silicon and anodically bonded to glass, uses pressure-induced flow and an embedded pillar array for controllable DNA stretching and delivery. Extremely low concentrations (50 fM) and sample volumes (∼1 µL) of DNA can be processed. The low height profile of the device permits high numerical aperture, high magnification imaging of DNA molecules, which remain in focus over extended distances. We demonstrate selective DNA sorting based on sequence-specific nick translation labeling and imaging at high camera frame rates. Nanopores are fabricated directly in the assembled device by laser etching. We show that uncoiling and stretching of the ultralong DNA molecules permits efficient nanopore capture and threading, which is simultaneously and synchronously imaged and electrically measured. Furthermore, our technique provides key insights into the translocation behavior of ultralong DNA and promotes the development of all-in-one micro/nanofluidic platforms for nanopore sensing of biomolecules.


Assuntos
DNA/genética , Eletricidade , Genoma Humano , Nanoporos , Análise de Sequência com Séries de Oligonucleotídeos , Fenômenos Ópticos , Eletrodos , Fluorescência , Células HCT116 , Humanos , Lasers
18.
PLoS Comput Biol ; 15(5): e1007067, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31145734

RESUMO

Single-molecule techniques for protein sequencing are making headway towards single-cell proteomics and are projected to propel our understanding of cellular biology and disease. Yet, single cell proteomics presents a substantial unmet challenge due to the unavailability of protein amplification techniques, and the vast dynamic-range of protein expression in cells. Here, we describe and computationally investigate the feasibility of a novel approach for single-protein identification using tri-color fluorescence and plasmonic-nanopore devices. Comprehensive computer simulations of denatured protein translocation processes through the nanopores show that the tri-color fluorescence time-traces retain sufficient information to permit pattern-recognition algorithms to correctly identify the vast majority of proteins in the human proteome. Importantly, even when taking into account realistic experimental conditions, which restrict the spatial and temporal resolutions as well as the labeling efficiency, and add substantial noise, a deep-learning protein classifier achieves 97% whole-proteome accuracies. Applying our approach for protein datasets of clinical relevancy, such as the plasma proteome or cytokine panels, we obtain ~98% correct protein identification. This study suggests the feasibility of a method for accurate and high-throughput protein identification, which is highly versatile and applicable.


Assuntos
Técnicas Biossensoriais/métodos , Nanoporos , Proteoma/análise , Proteômica/métodos , Proteínas Sanguíneas/análise , Biologia Computacional , Simulação por Computador , Citocinas/análise , Bases de Dados de Proteínas , Aprendizado Profundo , Proteínas Alimentares/análise , Estudos de Viabilidade , Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , Humanos , Nanotecnologia/métodos
19.
Adv Mater ; 31(23): e1900422, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30941823

RESUMO

Plasmonic and nanopore sensors have separately received much attention for achieving single-molecule precision. A plasmonic "hotspot" confines and enhances optical excitation at the nanometer length scale sufficient to optically detect surface-analyte interactions. A nanopore biosensor actively funnels and threads analytes through a molecular-scale aperture, wherein they are interrogated by electrical or optical means. Recently, solid-state plasmonic and nanopore structures have been integrated within monolithic devices that address fundamental challenges in each of the individual sensing methods and offer complimentary improvements in overall single-molecule sensitivity, detection rates, dwell time and scalability. Here, the physical phenomena and sensing principles of plasmonic and nanopore sensing are summarized to highlight the novel complementarity in dovetailing these techniques for vastly improved single-molecule sensing. A literature review of recent plasmonic nanopore devices is then presented to delineate methods for solid-state fabrication of a range of hybrid device formats, evaluate the progress and challenges in the detection of unlabeled and labeled analyte, and assess the impact and utility of localized plasmonic heating. Finally, future directions and applications inspired by the present state of the art are discussed.


Assuntos
Técnicas Biossensoriais/métodos , Metais/química , Nanoporos , Imagem Individual de Molécula/métodos , Técnicas Biossensoriais/instrumentação , Campos Eletromagnéticos , Cinética , Ácidos Nucleicos/análise , Polímeros/química , Proteínas/análise , Imagem Individual de Molécula/instrumentação , Espectrometria de Fluorescência , Análise Espectral Raman , Propriedades de Superfície
20.
Chem Soc Rev ; 47(23): 8512-8524, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30328860

RESUMO

Proteins are the structural elements and machinery of cells responsible for a functioning biological architecture and homeostasis. Advances in nanotechnology are catalyzing key breakthroughs in many areas, including the analysis and study of proteins at the single-molecule level. Nanopore sensing is at the forefront of this revolution. This tutorial review provides readers a guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores. Specifically, the review describes the key materials, nanoscale features, and design requirements of nanopores. It also discusses general design requirements as well as details on the analysis of protein translocation. Finally, the article provides the background necessary to understand current research trends and to encourage the identification of new biomedical applications for protein sensing using nanopores.


Assuntos
Nanoporos , Proteínas/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA