RESUMO
Richter's syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade B-cell malignancy. Molecular and functional studies have pointed out that CLL cells are close to the apoptotic threshold and dependent on BCL-2 for survival. However, it remains undefined how evasion from apoptosis evolves during disease transformation. Here, we employed functional and static approaches to compare the regulation of mitochondrial apoptosis in CLL and RS. BH3 profiling of 17 CLL and 9 RS samples demonstrated that RS cells had reduced apoptotic priming and lower BCL-2 dependence than CLL cells. While a subset of RS was dependent on alternative anti-apoptotic proteins and was sensitive to specific BH3 mimetics, other RS cases harbored no specific anti-apoptotic addiction. Transcriptomics of paired CLL/RS samples revealed downregulation of pro-apoptotic sensitizers during disease transformation. Albeit expressed, effector and activator members were less likely to colocalize with mitochondria in RS compared to CLL. Electron microscopy highlighted reduced cristae width in RS mitochondria, a condition further promoting apoptosis resistance. Collectively, our data suggest that RS cells evolve multiple mechanisms that lower the apoptotic priming and shift the anti-apoptotic dependencies away from BCL-2, making direct targeting of mitochondrial apoptosis more challenging after disease transformation.
Assuntos
Apoptose , Leucemia Linfocítica Crônica de Células B , Mitocôndrias , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Mitocôndrias/metabolismo , Masculino , Feminino , Pessoa de Meia-IdadeRESUMO
Chordomas are very rare malignant neoplasms of the bone occurring almost exclusively along the spine. As the tumours are thought to arise from notochordal remnants, the vast majority of chordomas express the TBXT gene, resulting in detectable nuclear amounts of its gene product brachyury. This T-Box transcription factor is commonly recognised as being essential in chordoma cells, and limiting TBXT expression is thought to be the key factor in controlling this tumour. Although the tumour is rare, distinct molecular differences and vulnerabilities have been described with regard to its location and the progression status of the disease, rendering it mandatory for novel cell lines to reflect all relevant chordoma subtypes. Here, we describe a novel chordoma cell line arising from the pleural effusion of a disseminated, poorly differentiated chordoma. This cell line, U-CH22, represents a highly aggressive terminal chordoma and, therefore, fills a relevant gap within the panel of available cell culture models for this orphan disease. CDK7 and CDK9 inhibition was lately identified as being effective in reducing viability in four chordoma cell lines, most likely due to a reduction in brachyury levels. In this study, we determined the capability of the CDK7 inhibitor THZ1 and the CDK1/2/5/9 inhibitor dinaciclib to reduce TBXT expression at mRNA and protein levels in a broad range of nine cell lines that are models of primary, recurrent, and metastasised chordoma of the clivus and the sacrum.
RESUMO
In the past few years, numerous new insights have been gained in the field of giant cell tumor of bone (GCTB). On the one hand, the detection of the highly characteristic histone mutation in the H3F3A gene in GCTB is becoming increasingly important in diagnostics in differentiating GCTB from other giant cell-rich lesions of bone as well as for defining rare variants of GCTB without osteoclastic giant cells. On the other hand, the effects of the H3F3A mutation were shown to have an impact on the epigenetic profile of tumor-driving stromal cells, providing new insights into tumorigenesis of GCTB.
Assuntos
Neoplasias Ósseas , Tumor de Células Gigantes do Osso , Humanos , Tumor de Células Gigantes do Osso/diagnóstico , Neoplasias Ósseas/diagnóstico , Histonas/genética , Osteoclastos/patologia , Células Gigantes/patologiaRESUMO
Giant cell tumor of bone (GCTB) is an osteolytic tumor driven by an H3F3A-mutated mononuclear cell with the accumulation of osteoclastic giant cells. We analyzed tissue from 13 patients with recurrence and 25 patients with denosumab therapy, including two cases of malignant transformation. We found a decrease in the total number of cells (p = 0.03), but not in the individual cell populations when comparing primary and recurrence. The patients treated with denosumab showed induction of osteoid formation increasing during therapy. The total number of cells was reduced (p < 0.0001) and the number of H3F3A-mutated tumor cells decreased (p = 0.0001), while the H3F3A wild-type population remained stable. The KI-67 proliferation rate dropped from 10% to 1% and Runx2- and SATB2-positive cells were reduced. The two cases of malignant transformation revealed a loss of the H3F3A-mutated cells, while the KI-67 rate increased. Changes in RUNX2 and SATB2 expression were higher in one sarcoma, while in the other RUNX2 was decreased and SATB2-positive cells were completely lost. We conclude that denosumab has a strong impact on the morphology of GCTB. KI-67, RUNX2 and SATB2 expression differed depending on the benign or malignant course of the tumor under denosumab therapy.
RESUMO
Giant cells (GCs) are thought to originate from the fusion of monocytic lineage cells and arise amid multiple backgrounds. To compare GCs of different origins, we immunohistochemically characterised the GCs of reactive and neoplastic lesions (n = 47). We studied the expression of 15 molecules including HLA class II molecules those relevant to the cell cycle, bone metabolism and lineage affiliation. HLA-DR was detectable in the GCs of sarcoidosis, sarcoid-like lesions, tuberculosis, and foreign body granuloma. Cyclin D1 was expressed by the GCs of neoplastic lesions as well as the GCs of bony callus, fibroid epulis, and brown tumours. While cyclin E was detected in the GCs of all lesions, p16 and p21 showed a heterogeneous expression pattern. RANK was expressed by the GCs of all lesions except sarcoid-like lesions and xanthogranuloma. All GCs were RANK-L-negative, and the GCs of all lesions were osteoprotegerin-positive. Osteonectin was limited to the GCs of chondroblastoma. Osteopontin and TRAP were detected in the GCs of all lesions except xanthogranuloma. RUNX2 was heterogeneously expressed in the reactive and neoplastic cohort. The GCs of all lesions except foreign body granuloma expressed CD68, and all GCs were CD163- and langerin-negative. This profiling points to a functional diversity of GCs despite their similar morphology.
RESUMO
Chordomas are rare bone tumors arising along the spine. Due to high resistance towards chemotherapy, surgical resection-often followed by radiation therapy-is currently the gold standard of treatment. So far, targeted systemic therapies have not been approved. The most frequent molecular alterations include the loss of PTEN and CDKN2A (encoding p16), being associated with poor prognoses in chordoma patients. Specific inhibitors of the PI3K/AKT/mTOR pathway as well as CDK4/6 have shown antitumor activity in preclinical studies and have recently been under investigation in phase II clinical trials; however, the clinical impacts and therapeutic consequences of concomitant PTEN and p16 deficiency have not yet been investigated in chordomas. In a cohort of 43 chordoma patients, 16% of the cases were immunohistochemically negative for both markers. The simultaneous loss of PTEN and p16 was associated with a higher KI-67 index, a tendency to metastasize, and significantly shorter overall survival. Additionally, 30% of chordoma cell lines (n = 19) were PTEN-/p16-negative. Treating these chordoma cells with palbociclib (CDK4/6 inhibitor), rapamycin (mTOR inhibitor) or the pan-PI3K inhibitor buparlisib significantly reduced cell viability. Synergistic effects were observed when combining palbociclib with rapamycin. In conclusion, we show that patients with PTEN-/p16-negative chordomas have poor prognoses and provide strong preclinical evidence that these patients might benefit from a Palbociclib/rapamycin combination treatment.
RESUMO
BACKGROUND: The anti-coronavirus disease 2019 (COVID-19) vaccines are of paramount importance in the fight against the COVID-19 pandemic. Both viral vector- and nucleic acid-based vaccines are known to effectively induce protection against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus by generating high antibody titers and effective T-cell responses to the spike protein they encode. Although these vaccines are being applied worldwide and have been extensively investigated, the immunomorphological events at the vaccination site with respect to SARS-CoV-2 spike protein expression have not yet been described. METHODS: We had the opportunity to examine the deltoid muscles of three men who died shortly after vaccination for unrelated reasons. We examined the vaccination sites histologically and immunohistochemically with various antibodies. Furthermore we incubated two different cell lines with one vaccine and examined the expression of the spike protein. RESULTS: The vaccination sites show a dense lymphohistiocytic interstitial infiltrate which surrounds the small vessels and extends into the perimysium. The spike protein is expressed by histiocytic cells with a dendritic shape that are CD68-positive and CD207-negative, fibrocytes, and very rare S100-positive cells. Interestingly, the skeletal muscle, being constitutively human leukocyte antigen (HLA)-A,B,C-negative, is induced at different levels in each specimen. In a cell culture experiment, we confirmed the ability of fibroblasts and interdigitating dendritic sarcoma cells to express spike protein in vitro after incubation with the Comirnaty vaccine. CONCLUSIONS: Histiocytic cells and fibrocytes are the heralds of spike protein synthesis at the vaccination site. The underlying cause of this apparent cell specifity is unknown. This needs to be investigated in future experiments, for example in an animal model.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Masculino , Humanos , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Vacinas contra COVID-19 , InflamaçãoRESUMO
Giant cell tumour of bone (GCTB) comprises the eponymous osteoclastic multinucleated giant cells eliciting bone lysis, an H3F3A-mutated neoplastic mononucleated fibroblast-like cell population, and H3F3A wild-type mononucleated stromal cells. In this study, we characterised four new cell lines from GCTB. Furthermore, we compared the genome-wide DNA methylation profile of 13 such tumours and three further cell lines with giant cell-rich lesions comprising three H3F3B-mutated chondroblastomas, three USP6-rearranged aneurysmal bone cysts, three non-ossifying fibromas, two hyperparathyroidism-associated brown tumours as well as mesenchymal stem cells, osteoblasts, and osteoclasts. In an unsupervised analysis, we delineated GCTB and chondroblastomas from the other analysed tumour entities. Using comparative methylation analysis, we demonstrated that the methylation pattern of the cell lines approximately equals that of H3F3A-mutated stromal cells in tissue. These patterns more resemble that of osteoblasts than that of mesenchymal stem cells, which argues for the osteoblast as the cell of origin of giant cell tumours of bone. Using enrichment analysis, we detected distinct hypermethylated clusters containing histone and collagen genes as well as target genes of the tumour suppressor p53. We found that the promotor regions of CDKN1A, CDKN2A, and IGFBP3 are methylated more strongly in GCTB than in the other giant cell-containing lesions, mesenchymal stem cells, osteoblasts, and osteoclasts (p < 0.001). This hypermethylation correlates with the lower gene expression at the mRNA level for these three genes in the cell lines, the lack of p16 and p21 in these cell lines, and the lower expression of p16 and p21 in GCTB. Overall, our analysis reveals characteristic DNA methylation patterns of giant cell tumours of bone and chondroblastomas and shows that cell lines of giant cell tumours of bone are a valid model for further analysis of H3F3A-mutated tumour cells. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias Ósseas , Condroblastoma , Tumor de Células Gigantes do Osso , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Condroblastoma/genética , Condroblastoma/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Epigênese Genética , Tumor de Células Gigantes do Osso/genética , Tumor de Células Gigantes do Osso/patologia , Humanos , Mutação , Ubiquitina Tiolesterase/genéticaRESUMO
Richter syndrome (RS) is defined as the transformation of chronic lymphocytic leukemia (CLL) into an aggressive lymphoma, mostly diffuse large B-cell lymphoma (DLBCL). Despite intensive therapy, patients with RS have an unfavorable clinical outcome. The detailed pathobiology of Richter transformation still needs to be elucidated. Here, we report high mRNA and protein levels of CARD9 in the RS cell line U-RT1. Co-immunoprecipitation revealed the assembly of a CBM complex using CARD9 instead of CARD11. CARD9 is known to be an activator of NF-кB signaling in myeloid cells. U-RT1 Western blot analyses showed phosphorylation of IκB as well as IKK, indicating a constitutively active canonical NF-кB pathway. This was further supported by the significant reduction in cell viability and CYLD cleavage products after CARD9 siRNA knockdown. We also showed immunostaining for CARD9 in 53% of cases analyzed in a series of RS tissue specimens, whereas other lymphomas rarely show CARD9 expression. This is the first report on ectopic expression and function of CARD9 in an aggressive B-cell lymphoma. Our findings suggest that CARD9 may contribute to the pathogenesis of RS.
RESUMO
BACKGROUND: Tumor recurrence is one of the major challenges in clinical management of chordoma. Despite R0-resection, approximately 50% of chordomas recur within ten years after initial surgery. The underlying molecular processes are poorly understood resulting in the lack of associated therapeutic options. This is not least due to the absence of appropriate cell culture models of this orphan disease. METHODS: The intra-personal progression model cell lines U-CH11 and U-CH11R were compared using array comparative genomic hybridization, expression arrays, RNA-seq, and immunocytochemistry. Cell line origin was confirmed by short tandem repeat analysis. Inter-personal cell culture models (n = 6) were examined to validate whether the new model is representative. Cell viability after HOX/PBX complex inhibition with small peptides was determined by MTS assays. RESULTS: Using whole genome microarray analyses, striking differences in gene expression between primary and recurrent chordomas were identified. These expression differences were confirmed in the world's first intra-personal model of chordoma relapse consisting of cell lines established from a primary (U-CH11) and the corresponding recurrent tumor (U-CH11R). Array comparative genomic hybridization and RNA-sequencing analyses revealed profound genetic similarities between both cell lines pointing to transcriptomic reprogramming as a key mechanism of chordoma progression. Network analysis of the recurrence specific genes highlighted HOX/PBX signaling as a common dysregulated event. Hence, HOX/PBX complexes were used as so far unknown therapeutic targets in recurrent chordomas. Treating chordoma cell lines with the complex formation inhibiting peptide HXR9 induced cFOS mediated apoptosis in all chordoma cell lines tested. This effect was significantly stronger in cell lines established from chordoma relapses. CONCLUSION: Clearly differing gene expression patterns and vulnerabilities to HOX/PBX complex inhibition in highly therapy resistant chordoma relapses were identified using the first intra-personal loco-regional and further inter-personal chordoma progression models. For the first time, HOX/PBX interference was used to induce cell death in chordoma and might serve as the basic concept of an upcoming targeted therapy for chordomas of all progression stages.
Assuntos
Cordoma/genética , Recidiva Local de Neoplasia/genética , Linhagem Celular Tumoral , Cordoma/patologia , HumanosRESUMO
BACKGROUND: Chordoma are uncommon aggressive tumors of the skeleton. Surgical resection is often subtotal and adjuvant treatment possibilities are limited as chordomas are highly chemo- and radioresistant. In the present study we examined the impact of 5-ALA PDT on different human chordoma cell lines. Furthermore, we investigated the variation of two parameters: (1.) 5-ALA incubation time and (2.) supplemental use of ciprofloxacin as iron chelator. METHODS: Experiments were realized in vitro with three different human chordoma cell lines: U-CH2, U-CH2B and U-CH14. After pre-incubation for 24 h with various concentrations of ciprofloxacin (1.5 - 5.0 µg/ml), different amounts of 5-ALA (15 - 50 µg/ml) were applied to the cells either for a brief (4 h) or a long (6 h) incubation time. Subsequently cells were exposed to photodynamic radiation. Cell viability was exploited by WST-1 assay. Thus, for each of the three cell lines, two drug combinations (ciprofloxacin plus 5-ALA and 5-ALA only) and two incubation times (short, 4 h and long, 6 h) were tested. Negative control groups were also examined. RESULTS: Supplemental use of ciprofloxacin led to increased cell death in each of the cell lines. Different 5-ALA incubation times (4 h vs. 6 h) showed no significant differences in cell viability except for U-CH2. CONCLUSION: Ciprofloxacin as an ordinary applied antibiotic, enhanced the effect of 5-ALA PDT on different human chordoma cell lines in vitro. The impact was dependent on the dose of ciprofloxacin-5-ALA. There were no notable differences for the tested 5-ALA incubation times. In human chordoma cell lines 5-ALA PDT may effectively be amended by ciprofloxacin.
Assuntos
Cordoma , Fotoquimioterapia , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Cordoma/tratamento farmacológico , Ciprofloxacina/farmacologia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologiaRESUMO
AIMS: Giant cell tumour of bone (GCTB) is histologically defined as a lesion containing reactive giant cells and a neoplastic mononuclear cell population; in up to 92% of cases, GCTB is characterised by a specific mutation of the histone gene H3F3A. The cellular composition ranges from giant-cell-rich to giant-cell-poor. The diagnosis of GCTB can be challenging, and several other lesions need to be excluded, e.g. aneurysmal bone cysts, non-ossifying fibromas, chondroblastomas, brown tumours, and giant-cell-rich osteosarcomas. Our aim was to analyse the clinical history, imaging, molecular pathology and histology of three H3F3A-mutated bone tumours without detectable giant cells. None of the patients received denosumab therapy. METHODS AND RESULTS: Diagnostic material was obtained by curettage or resection and/or biopsy. Common histomorphological features of all three reported lesions were fibrocytic, oval cells in a background of osteoid and an absence of multinuclear giant cells as confirmed with CD68 immunohistochemistry. We used immunohistochemistry and Sanger sequencing to demonstrate positivity for the H3.3 p.G34W mutation. Differential diagnoses were systematically excluded on the basis of histomorphology, immunohistochemistry, and fluorescence in-situ hybridisation. The imaging (radiography, computed tomography, and magnetic resonance imaging) for all three cases is presented and discussed. CONCLUSIONS: We believe that these GCTBs without giant cells expand one end of the heterogeneous range of GCTB. Because of the lack of giant cells, correct diagnosis of GCTB is challenging or even impossible on histological grounds alone. In these cases, detection of the characteristic H3F3A mutation (G34W-specific antibody RM263 or sequencing) is extremely helpful for diagnosing those lesions without giant cells as giant cell tumours of bone.
Assuntos
Tumor de Células Gigantes do Osso , Histonas , Adulto , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Osso e Ossos/patologia , Condroblastoma , Diagnóstico Diferencial , Feminino , Tumor de Células Gigantes do Osso/diagnóstico , Tumor de Células Gigantes do Osso/metabolismo , Tumor de Células Gigantes do Osso/patologia , Células Gigantes/patologia , Histonas/genética , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Mutação , Osteossarcoma , RadiologiaRESUMO
Giant cell tumor of bone (GCTB) is a locally aggressive lesion of intermediate malignancy. Malignant transformation of GCTB is a rare event. In 2013, the humanized monoclonal antibody against receptor activator of nuclear factor-κb-Ligand (RANKL) denosumab was approved for treatment of advanced GCTB. Since then, several reports have questioned the role of denosumab during occasional malignant transformation of GCTB. We report on three patients with H3F3A-mutated GCTBs, treated with denosumab. The tissue samples were analysed by histomorphology, immunohistochemistry, and in two instances by next generation panel sequencing of samples before and after treatment. One patient had a mutation of ARID2 in the recurrence of the GCTB under treatment with denosumab. One patient developed a pleomorphic sarcoma and one an osteoblastic osteosarcoma during treatment. Sequencing revealed a persisting H3F3A mutation in the osteosarcoma while the pleomorphic sarcoma lost the H3F3A mutation; however, a FGFR1 mutation, both in the recurrence and in the pleomorphic sarcoma persisted. In addition, the pleomorphic sarcoma showed an AKT2 and a NRAS mutation. These data are inconclusive concerning the role denosumab plays in the event of malignant progression/transformation of GCTB and point to diverging pathways of tumor progression of GCTB associated with this treatment.
Assuntos
Transformação Celular Neoplásica/patologia , Denosumab/uso terapêutico , Progressão da Doença , Tumor de Células Gigantes do Osso/tratamento farmacológico , Tumor de Células Gigantes do Osso/genética , Histonas/genética , Mutação/genética , Adulto , Transformação Celular Neoplásica/efeitos dos fármacos , Denosumab/farmacologia , Evolução Fatal , Feminino , Tumor de Células Gigantes do Osso/patologia , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Adulto JovemRESUMO
The advent of highly effective treatments targeting the disease biology of chronic lymphocytic leukemia (CLL) has transformed the therapeutic field tremendously. However, transformation into an aggressive B-cell lymphoma, called Richter syndrome (RS), remains highly challenging since the treatment options for this condition are still insufficient. Exploratory drug testing and experimental studies are restricted by the lack of satisfactory models. We have established U-RT1, a cell line derived from a highly proliferating RS clonally related to the patient's underlying CLL. The cell line shows morphological features and an immunophenotype of RS-DLBCL (non-GCB). Molecular analysis revealed a complex karyotype with driver aberrations characteristic for RS such as loss of TP53 and CDKN2A. Furthermore, U-RT1 displays a chromosomal gain of the NOTCH1 gene locus and strong immunoreactivity for BCL-2. These features suggest that U-RT1 is the first eligible model system for investigations on the pathogenesis of RS and novel treatment options.
Assuntos
Linhagem Celular Tumoral , Leucemia Linfocítica Crônica de Células B/patologia , Apoptose/genética , Biomarcadores , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Hibridização Genômica Comparativa , Progressão da Doença , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Cariótipo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Cultura Primária de CélulasRESUMO
A dendritic cell sarcoma cell line, U-DCS, was established from a dendritic cell sarcoma in a 53-year-old Caucasian male patient. Since its establishment, U-DCS has maintained stable phenotypic characteristics in vitro and has a doubling time of approximately 2 days under standard culture conditions. U-DCS is growing with typical dendritic cell morphology in tissue and expresses the dendritic cell sarcoma immunophenotypic markers S100 protein, MHCI, MHCII, and vimentin. Expression analysis revealed transcripts for the toll-like receptors TLR3, -4, -9 and DDX58 (RIG-I), but not for TLR2. U-DCS shows functional features of dendritic cells with the ability of phagocytosis and antigen-specific T cell stimulation. Karyotype-, CGH-, and mFISH analysis point to a chromosomal instability and a hypotetraploid karyotype with approximately 130 chromosomes. U-DCS is the first immortalized human dendritic cell sarcoma cell line and has some morphological and functional features of dendritic cells without dependency on growth factors.
Assuntos
Técnicas de Cultura de Células/métodos , Células Dendríticas/citologia , Sarcoma/metabolismo , Linhagem Celular Tumoral , Instabilidade Cromossômica , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunofenotipagem , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Pessoa de Meia-Idade , Fagocitose , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas S100/metabolismo , Sarcoma/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Vimentina/metabolismoRESUMO
C3 protein toxins produced by Clostridium (C.) botulinum and C. limosum are mono-ADP-ribosyltransferases, which specifically modify the GTPases Rho A/B/C in the cytosol of monocytic cells, thereby inhibiting Rho-mediated signal transduction in monocytes, macrophages, and osteoclasts. C3 toxins are selectively taken up into the cytosol of monocytic cells by endocytosis and translocate from acidic endosomes into the cytosol. The C3-catalyzed ADP-ribosylation of Rho proteins inhibits essential functions of these immune cells, such as migration and phagocytosis. Here, we demonstrate that C3 toxins enter and intoxicate dendritic cells in a time- and concentration-dependent manner. Both immature and mature human dendritic cells efficiently internalize C3 exoenzymes. These findings could also be extended to the chimeric fusion toxin C2IN-C3lim. Moreover, stimulated emission depletion (STED) microscopy revealed the localization of the internalized C3 protein in endosomes and emphasized its potential use as a carrier to deliver foreign proteins into dendritic cells. In contrast, the enzyme C2I from the binary C. botulinum C2 toxin was not taken up into dendritic cells, indicating the specific uptake of C3 toxins. Taken together, we identified human dendritic cells as novel target cells for clostridial C3 toxins and demonstrated the specific uptake of these toxins via endosomal vesicles.
Assuntos
ADP Ribose Transferases/toxicidade , Toxinas Botulínicas/toxicidade , Células Dendríticas/efeitos dos fármacos , ADP Ribose Transferases/metabolismo , Toxinas Botulínicas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Endocitose , Endossomos/metabolismo , Células HeLa , Humanos , Transporte Proteico , Fatores de TempoRESUMO
Mutations in SOCS1 are frequent in primary mediastinal B-cell lymphoma and classical Hodgkin lymphoma. In the latter, SOCS1 mutations affect the length of the encoded protein (major mutations) and are associated with shorter patient survival. Two independent studies examined the prognostic impact of SOCS1 mutations in diffuse large B-cell lymphoma (DLBCL) and showed differing results. This may be due to the small number of included patients, the heterogeneity of patients' demographics and the distinct treatment schemes in these studies. To overcome the size limitations of these previous studies, we assessed SOCS1 mutations in the RICOVER-60 cohort. The cohort uniformly consists of elderly patients (aged 61-80 years) treated with the CHOP-14 scheme (cyclophosphamide, hydroxydaunorubicin, vincristine, prednisolone at 14-day intervals) with or without an additional rituximab treatment. Patient outcomes were analysed with regard to overall SOCS1 mutation frequency, major and minor mutations and a novel impact-based classifier - against the treatment modalities. Patients harbouring putative pathogenic SOCS1 mutations showed significant reduced overall survival within the CHOP plus rituximab group. Hence, putative pathogenic SOCS1 mutations seem to efface the beneficial effect of the therapeutic CD20 antibody. Comparing published data of whole exome and transcriptome sequencing of a large DLBCL cohort confirmed that predicted deleterious SOCS1 mutations forecast pre-eminent survival in early onset DLBCL.
Assuntos
Biomarcadores Tumorais/genética , Linfoma Difuso de Grandes Células B/genética , Mutação , Proteína 1 Supressora da Sinalização de Citocina/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos de Coortes , Ciclofosfamida/uso terapêutico , Análise Mutacional de DNA/métodos , DNA de Neoplasias/genética , Doxorrubicina/uso terapêutico , Feminino , Genótipo , Humanos , Estimativa de Kaplan-Meier , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Proteínas de Neoplasias/genética , Prednisolona/uso terapêutico , Prognóstico , Rituximab/administração & dosagem , Resultado do Tratamento , Vincristina/uso terapêuticoRESUMO
The giant cell tumor of bone (GCTB) is a locally aggressive primary bone tumor that is composed of mononuclear stroma cells, scattered macrophages, and multinucleated osteoclast-like giant cells which cause pathologic osteolysis. The stroma cells represent the neoplastic population of the tumor and are characterized by the H3F3A mutation G34W. This point mutation is regarded as the driver mutation of GCTB. We have established three new stable H3F3A mutated GCTB cell lines: U-GCT1, U-GCT2, and U-GCT3M. MK-1775 is a Wee1-kinase inhibitor which has been used for blocking of sarcoma growth. In the cell lines we detected Wee1, Cdk1, Cyclin B1, H3K36me3, and Rrm2 as members of the Wee1 pathway. We analyzed the effect of MK-1775 and gemcitabine, alone and in combination, on the growth of the cell lines. The cell lines showed a significant reduction in cell proliferation when treated with MK-1775 or gemcitabine. The combination of both agents led to a further significant reduction in cell proliferation compared to the single agents. Immunohistochemical analysis of 13 GCTB samples revealed that Wee1 and downstream-relevant members are present in GCTB tissue samples. Overall, our work offers valuable new tools for GCTB studies and presents a description of novel biomarkers and molecular targeting strategies.
Assuntos
Neoplasias Ósseas , Proteínas de Ciclo Celular , Tumor de Células Gigantes do Osso , Histonas , Mutação , Proteínas de Neoplasias , Proteínas Tirosina Quinases , Transdução de Sinais , Adolescente , Adulto , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Feminino , Tumor de Células Gigantes do Osso/genética , Tumor de Células Gigantes do Osso/metabolismo , Tumor de Células Gigantes do Osso/patologia , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismoRESUMO
Leiomyosarcoma (LMS) is characterized by high genomic complexity, and to date, no specific targeted therapy is available. In a genome-wide approach, we profiled genomic aberrations in a small cohort of eight primary tumours, two relapses, and eight metastases across nine different patients. We identified CDK4 amplification as a recurrent alteration in 5 out of 18 samples (27.8%). It has been previously shown that the LMS cell line SK-LMS-1 has a defect in the p16 pathway and that this cell line can be inhibited by the CDK4 and CDK6 inhibitor palbociclib. For SK-LMS-1 we confirm and for SK-UT-1 we show that both LMS cell lines express CDK4 and that, in addition, strong CDK6 expression is seen in SK-LMS-1, whereas Rb was expressed in SK-LMS-1 but not in SK-UT-1. We confirm that inhibition of SK-LMS-1 with palbociclib led to a strong decrease in protein levels of Phospho-Rb (Ser780), a decreased cell proliferation, and G0/G1-phase arrest with decreased S/G2 fractions. SK-UT-1 did not respond to palbociclib inhibition. To compare these in vitro findings with patient tissue samples, a p16, CDK4, CDK6, and p-Rb immunohistochemical staining assay of a large LMS cohort (n=99 patients with 159 samples) was performed assigning a potential responder phenotype to each patient, which we identified in 29 out of 99 (29.3%) patients. Taken together, these data show that CDK4/6 inhibitors may offer a new option for targeted therapy in a subset of LMS patients.
RESUMO
Chordomas are rare tumours of the bone arising along the spine from clivus to sacrum. We compared three chordoma cell lines of the clivus region including the newly established clivus chordoma cell line, U-CH14, with nine chordoma cell lines originating from sacral primaries by morphology, on genomic and expression levels and with patient samples from our chordoma tissue bank. Clinically, chordomas of the clivus were generally smaller in size at presentation and patients with sacral chordomas had more metastases and more often recurrent disease. All chordoma cell lines had a typical physaliphorous morphology and expressed brachyury, S100-protein and cytokeratin. By expression analyses we detected differentially expressed genes in the clivus derived cell lines as compared to the sacral cell lines. Among these were HOXA7, HOXA9, and HOXA10 known to be important for the development of the anterior-posterior body axis. These results were confirmed by qPCR. Immunohistologically, clivus chordomas had no or very low levels of HOXA10 protein while sacral chordomas showed a strong nuclear positivity in all samples analysed. This differential expression of HOX genes in chordomas of the clivus and sacrum suggests an oncofetal mechanism in gene regulation linked to the anatomic site.