Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2246): 20220112, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907214

RESUMO

The large-scale laminar/turbulent spiral patterns that appear in the linearly unstable regime of counter-rotating Taylor-Couette flow are investigated from a statistical perspective by means of direct numerical simulation. Unlike the vast majority of previous numerical studies, we analyse the flow in periodic parallelogram-annular domains, following a coordinate change that aligns one of the parallelogram sides with the spiral pattern. The domain size, shape and spatial resolution have been varied and the results compared with those in a sufficiently large computational orthogonal domain with natural axial and azimuthal periodicity. We find that a minimal parallelogram of the right tilt significantly reduces the computational cost without notably compromising the statistical properties of the supercritical turbulent spiral. Its mean structure, obtained from extremely long time integrations in a co-rotating reference frame using the method of slices, bears remarkable similarity with the turbulent stripes observed in plane Couette flow, the centrifugal instability playing only a secondary role. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal Philosophical transactions paper (Part 2)'.

2.
Artigo em Inglês | MEDLINE | ID: mdl-23944548

RESUMO

This study aims to provide a better understanding of recently identified transition scenarios exhibited by traveling wave solutions in pipe flow. This particular family of solutions are invariant under certain reflectional symmetry transformations and they emerge from saddle-node bifurcations within a two-dimensional parameter space characterized by the length of the pipe and the Reynolds number. The present work precisely provides a detailed analysis of a codimension-two saddle-node bifurcation arising in discrete dynamical systems (maps) with Z(2) symmetry. Normal form standard techniques are applied in order to obtain the reduced map up to cubic order. All possible bifurcation scenarios exhibited by this normal form are analyzed in detail. Finally, a qualitative comparison of these scenarios with the ones observed in the aforementioned hydrodynamic problem is provided.

3.
Phys Rev Lett ; 110(22): 224502, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767729

RESUMO

Although the equations governing fluid flow are well known, there are no analytical expressions that describe the complexity of turbulent motion. A recent proposition is that in analogy to low dimensional chaotic systems, turbulence is organized around unstable solutions of the governing equations which provide the building blocks of the disordered dynamics. We report the discovery of periodic solutions which just like intermittent turbulence are spatially localized and show that turbulent transients arise from one such solution branch.

4.
Phys Rev Lett ; 108(21): 214502, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003266

RESUMO

Recent numerical studies suggest that in pipe and related shear flows, the region of phase space separating laminar from turbulent motion is organized by a chaotic attractor, called an edge state, which mediates the transition process. We here confirm the existence of the edge state in laboratory experiments. We observe that it governs the dynamics during the decay of turbulence underlining its potential relevance for turbulence control. In addition we unveil two unstable traveling wave solutions underlying the experimental flow fields. This observation corroborates earlier suggestions that unstable solutions organize turbulence and its stability border.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA