RESUMO
Introduction: Rhodnius prolixus is a hematophagous insect and one of the main vectors for Trypanosoma cruzi and Trypanosoma rangeli parasites in Latin America. Gut microbiota and insect immune responses affect T. cruzi and T. rangeli infection within triatomines. Particularly the Toll and IMD signaling pathways activations and how they orchestrate the antimicrobial peptides (AMPs) expressions in R. prolixus, especially when infected by T. rangeli. Objectives: Examine how T. rangeli infection modulates R. prolixus cellular and humoral immunity and its impacts on insect microbiota. Methods: R. prolixus was fed on blood containing epimastigotes of T. rangeli, and infection was quantified in insect tissues. The gene expression of dorsal, cactus, relish, PGRP, and AMPs was examined in the midgut, fat body, and salivary glands by quantitative real-time PCR. Microbiota composition was analyzed using RT-q PCR targeting specific bacterial species. Hemocyte numbers and phenoloxidase activity were quantified to assess cellular immune responses. Results: T. rangeli infection modulated triatomine immunity in midgut and hemocoel, activating the expression of the NF-kB gene dorsal, associated with the Toll pathway; increasing expression of the gene encoding PGRP receptor, a component involved in the IMD pathway, both in the intestine and fat body; repressing the expression of the relish transcription factor, mainly in salivary glands. Among the R. prolixus AMPs studied, T. rangeli infection repressed all AMP gene expression, other than defensin C which increased mRNA levels. The PO activity was enhanced in the hemolymph of infected insects. T. rangeli infection did not induce hemocyte number alterations compared to control insects. However, an increase in hemocyte microaggregation was detected in infected insects. Discussion: R. prolixus recognizes T. rangeli infection and triggers humoral and cellular immune responses involving Toll pathway activation, defensin C synthesis, increased phenoloxidase activity, and enhanced hemocyte aggregation. On the other hand, T. rangeli infection suppressed some IMD pathway components, suggesting that, in R. prolixus, this pathway is involved in defensins A and B gene regulation. Importantly, these immune responses altered the bacterial microbiota composition, potentially favoring T. rangeli establishment in the insect vector.
RESUMO
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
RESUMO
Despite intramuscular vaccines saving millions of lives, constant devastating waves of SARS-CoV-2 infections continue. The elimination of COVID-19 is challenging, but necessary in order to avoid millions more people who would suffer from long COVID if we fail. Our paper describes rapidly advancing and innovative therapeutic strategies for the early stage of infection with COVID-19 so that tolerating continuing cycles of infection should be unnecessary in the future. These therapies include new vaccines with broader specificities, nasal therapies and antiviral drugs some targeting COVID-19 at the first stage of infection and preventing the virus entering the body in the first place. Our article describes the advantages and disadvantages of each of these therapeutic options which in various combinations could eventually prevent renewed waves of infection. Finally, important consideration is given to political, social and economic barriers that since 2020 hindered vaccine application and are likely to interfere again with any COVID-19 endgame.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Antivirais/uso terapêuticoRESUMO
OBJECTIVE: Silicosis is a pneumoconiosis characterized by fibrosis of the lung parenchyma caused by inhalation of silica particles. Genetic factors might play a role in the severity silicosis. We sought to evaluate the influence of polymorphisms in the ACE, FAS, FASLG, NOS2, IL1RN, FAM13A, TGFB1, and TNF genes on the severity of silicosis. METHODS: Nine polymorphisms were genotyped by PCR in a sample of 143 patients with silicosis in the state of Rio de Janeiro, Brazil. RESULTS: Fifty-seven patients (40%) were classified as having simple silicosis and 86 (60%) were classified as having complicated silicosis. The TT genotype of rs1800469 in the TGFB1 gene showed a protective effect for complicated silicosis (OR = 0.35; 95% CI, 0.14-0.92; p = 0.028) when compared with the other two genotypes (CC+CT). The polymorphic T allele of rs763110 in the FASLG gene (OR = 0.56; 95% CI, 0.31-0.99; p = 0.047), as well as a dominant model for the T allele (TT+CT: OR = 0.37; 95% CI, 0.15-0.96; p = 0.037), also showed a protective effect. When patients with simple silicosis despite having been exposed to silica for a longer time (> 44,229 hours) were compared with patients with complicated silicosis despite having been exposed to silica for a shorter time, the T allele of rs763110 in the FASLG gene (OR = 0.20; 95% CI, 0.08-0.48; p < 0.0001), as well as dominant and recessive models (OR = 0.06; 95% CI, 0.00-0.49; p = 0.01 and OR = 0.22; 95% CI, 0.06-0.77; p = 0.014, respectively), showed a protective effect against the severity of silicosis. CONCLUSIONS: It appears that rs1800469 polymorphisms in the TGFB1 gene and rs763110 polymorphisms in the FASLG gene are involved in the severity of silicosis. Given the lack of studies relating genetic polymorphisms to the severity of silicosis, these results should be replicated in other populations.
Assuntos
Dióxido de Silício , Silicose , Humanos , Dióxido de Silício/toxicidade , Dióxido de Silício/análise , Predisposição Genética para Doença , Brasil , Estudos de Casos e Controles , Silicose/genética , Polimorfismo Genético , Proteínas Ativadoras de GTPase/genéticaRESUMO
Studies on the effects of azadirachtin treatment, ecdysone supplementation and ecdysone therapy on both the ultrastructural organization of the rectum in 5th-instar nymph of Rhodnius prolixus and the ex vivo attachment behavior of Trypanosoma cruzi under these experimental conditions were carried out. Control insects had a typical and significant organization of the rectum cuticle consisted of four main layers (procuticle, inner epicuticle, outer epicuticle, and wax layer) during the entire period of the experiment. Both azadirachtin treatment and ecdysone supplementation avoid the development of both outer epicuticle and wax layer. Oral therapy with ecdysone partially reversed the altered organization and induce the development of the four main rectal cuticle layers. In the same way, the ex vivo attachment of T. cruzi to rectal cuticle was blocked by azadirachtin treatment but ecdysone therapy also partially recovered the parasite adhesion rates to almost those detected in control insects. These results point out that ecdysone may be a factor responsible - directly or indirectly - by the modulation of rectum ultrastructural arrangement providing a superficial wax layer to the attachment followed by metacyclogenesis of T. cruzi in the rectum of its invertebrate hosts.
Assuntos
Doença de Chagas , Rhodnius , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Ecdisona/farmacologia , Ninfa , Reto/parasitologia , Reto/ultraestrutura , Rhodnius/parasitologiaRESUMO
ABSTRACT Objective: Silicosis is a pneumoconiosis characterized by fibrosis of the lung parenchyma caused by inhalation of silica particles. Genetic factors might play a role in the severity silicosis. We sought to evaluate the influence of polymorphisms in the ACE, FAS, FASLG, NOS2, IL1RN, FAM13A, TGFB1, and TNF genes on the severity of silicosis. Methods: Nine polymorphisms were genotyped by PCR in a sample of 143 patients with silicosis in the state of Rio de Janeiro, Brazil. Results: Fifty-seven patients (40%) were classified as having simple silicosis and 86 (60%) were classified as having complicated silicosis. The TT genotype of rs1800469 in the TGFB1 gene showed a protective effect for complicated silicosis (OR = 0.35; 95% CI, 0.14-0.92; p = 0.028) when compared with the other two genotypes (CC+CT). The polymorphic T allele of rs763110 in the FASLG gene (OR = 0.56; 95% CI, 0.31-0.99; p = 0.047), as well as a dominant model for the T allele (TT+CT: OR = 0.37; 95% CI, 0.15-0.96; p = 0.037), also showed a protective effect. When patients with simple silicosis despite having been exposed to silica for a longer time (> 44,229 hours) were compared with patients with complicated silicosis despite having been exposed to silica for a shorter time, the T allele of rs763110 in the FASLG gene (OR = 0.20; 95% CI, 0.08-0.48; p < 0.0001), as well as dominant and recessive models (OR = 0.06; 95% CI, 0.00-0.49; p = 0.01 and OR = 0.22; 95% CI, 0.06-0.77; p = 0.014, respectively), showed a protective effect against the severity of silicosis. Conclusions: It appears that rs1800469 polymorphisms in the TGFB1 gene and rs763110 polymorphisms in the FASLG gene are involved in the severity of silicosis. Given the lack of studies relating genetic polymorphisms to the severity of silicosis, these results should be replicated in other populations.
RESUMO Objetivo: A silicose é uma pneumoconiose caracterizada por fibrose do parênquima pulmonar causada por inalação de partículas de sílica. Fatores genéticos podem desempenhar um papel na gravidade da silicose. Nosso objetivo foi avaliar a influência de polimorfismos dos genes ACE, FAS, FASLG, NOS2, IL1RN, FAM13A, TGFB1 e TNF na gravidade da silicose. Métodos: Nove polimorfismos foram genotipados por meio de PCR em uma amostra composta por 143 pacientes com silicose no estado do Rio de Janeiro, Brasil. Resultados: A silicose foi classificada em simples em 57 (40%) dos pacientes e em complicada, em 86 (60%). O genótipo TT do polimorfismo rs1800469 do gene TGFB1 teve efeito protetor contra a silicose complicada (OR = 0,35; IC95%: 0,14-0,92; p = 0,028) em comparação com os outros dois genótipos (CC+CT). O alelo T polimórfico do polimorfismo rs763110 do gene FASLG (OR = 0,56; IC95%: 0,31-0,99; p = 0,047) e um modelo dominante do alelo T (TT+CT: OR = 0,37; IC95%: 0,15-0,96; p = 0,037) também tiveram efeito protetor. Quando se compararam os pacientes que tinham silicose simples com um tempo maior de exposição à sílica (> 44.229 horas) àqueles que tinham silicose complicada com um tempo menor de exposição à sílica, o alelo T do polimorfismo rs763110 do gene FASLG (OR = 0,20; IC95%: 0,08-0,48; p < 0,0001) e modelos dominantes e recessivos (OR = 0,06; IC95%: 0,00-0,49; p = 0,01 e OR = 0,22; IC95%: 0,06-0,77; p = 0,014, respectivamente) tiveram efeito protetor contra a gravidade da silicose. Conclusões: Polimorfismos rs1800469 do gene TGFB1 e polimorfismos rs763110 do gene FASLG parecem estar envolvidos na gravidade da silicose. Como há poucos estudos que tenham estabelecido relações entre polimorfismos genéticos e a gravidade da silicose, esses resultados devem ser replicados em outras populações.
RESUMO
Obesity is a pandemic condition of complex etiology, resulting from the increasing exposition to obesogenic environmental factors combined with genetic susceptibility. In the past two decades, advances in genetic research identified variants of the leptin-melanocortin pathway coding for genes, which are related to the potentiation of satiety and hunger, immune system, and fertility. Here, we review cases of congenital leptin deficiency and the possible beneficial effects of leptin replacement therapy. In summary, the cases presented here show clinical phenotypes of disrupted bodily energy homeostasis, biochemical and hormonal disorders, and abnormal immune response. Some phenotypes can be partially reversed by exogenous administration of leptin. With this review, we aim to contribute to the understanding of leptin gene mutations as targets for obesity diagnostics and treatment strategies.
Assuntos
Leptina/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/genética , Metabolismo Energético/genética , Terapia de Reposição Hormonal , Humanos , Leptina/deficiência , Leptina/genética , Mutação , Obesidade/congênito , FenótipoRESUMO
Rhodnius prolixus is an insect vector of two flagellate parasites, Trypanosoma rangeli and Trypanosoma cruzi, the latter being the causative agent of Chagas disease in Latin America. The R. prolixus neuroendocrine system regulates the synthesis of the steroid hormone ecdysone, which is essential for not only development and molting but also insect immunity. Knowledge for how this modulates R. prolixus midgut immune responses is essential for understanding interactions between the vector, its parasites and symbiotic microbes. In the present work, we evaluated the effects of ecdysone inhibition on R. prolixus humoral immunity and homeostasis with its microbiota, using the triterpenoid natural product, azadirachtin. Our results demonstrated that azadirachtin promoted a fast and lasting inhibitory effect on expression of both RpRelish, a nuclear factor kappa B transcription factor (NF-kB) component of the IMD pathway, and several antimicrobial peptide (AMP) genes. On the other hand, RpDorsal, encoding the equivalent NF-kB transcription factor in the Toll pathway, and the defC AMP gene were upregulated later in azadirachtin treated insects. The treatment also impacted on proliferation of Serratia marcescens, an abundant commensal bacterium. The simultaneous administration of ecdysone and azadirachtin in R. prolixus blood meals counteracted the azadirachtin effects on insect molting and also on expression of RpRelish and AMPs genes. These results support the direct involvement of ecdysone in regulation of the IMD pathway in the Rhodnius prolixus gut.
Assuntos
Doença de Chagas/imunologia , Ecdisona/metabolismo , Proteínas de Insetos/metabolismo , Insetos Vetores/fisiologia , Inseticidas/administração & dosagem , Mucosa Intestinal/imunologia , Limoninas/administração & dosagem , Rhodnius/fisiologia , Trypanosoma cruzi/fisiologia , Trypanosoma rangeli/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Microbioma Gastrointestinal , Homeostase , Imunidade Humoral , Imunidade Inata , Muda , NF-kappa B/metabolismo , Serratia marcescens , Transdução de SinaisRESUMO
Dengue, yellow fever, Zika, and chikungunya arboviruses are endemic in tropical countries and are transmitted by Aedes aegypti. Resistant populations of this mosquito against chemical insecticides are spreading worldwide. This study aimed to evaluate the biological effects of exposure of pesticide-sensitive Ae. aegypti larvae (Rockefeller) to conidia of the entomopathogen, Metarhizium brunneum, laboratory strains ARSEF 4556 and V275, and any synergistic activity of phenylthiourea (PTU). In addition, to investigate the nature of any cross-resistance mechanisms, these M. brunneum strains were tested against the Rockefeller larvae and two temephos- and deltamethrin-resistant wild mosquito populations from Rio de Janeiro. Treatment of Rockefeller larvae with 106 conidia/ml of ARSEF 4556 and V275 fungal strains resulted in significant decreased survival rates to 40 and 53.33%, respectively (P < 0.0001), compared with untreated controls. In contrast, exposure to 104 or 105 conidia/ml showed no such significant survival differences. However, the addition of PTU to the conidia in the bioassays significantly increased mortalities in all groups and induced a molt block. Experiments also showed no differences in Ae. aegypti mortalities between the fungal treated, wild pesticide-resistant populations and the Rockefeller sensitive strain. The results show the efficacy of M. brunneum in controlling Ae. aegypti larvae and the synergistic role of PTU in this process. Importantly, there was no indication of any cross-resistance mechanisms between Ae. aegypti sensitive or resistant to pesticides following treatment with the fungi. These results further support using M. brunneum as an alternative biological control agent against mosquito populations resistant to chemical insecticides.
Assuntos
Aedes/microbiologia , Agentes de Controle Biológico/farmacologia , Controle de Insetos , Resistência a Inseticidas , Inseticidas/farmacologia , Metarhizium/fisiologia , Controle Biológico de Vetores , Aedes/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Larva/microbiologia , Organofosfatos/farmacologia , Feniltioureia/farmacologia , Piretrinas/farmacologiaRESUMO
Chagas disease, infecting ca. 8 million people in Central and South America, is mediated by the protozoan parasite, Trypanosoma cruzi. The parasite is transmitted by the bite of blood sucking triatomine insects, such as Rhodnius prolixus, that had previously fed on parasite-infected vertebrate blood and voided their contaminated feces and urine into the wound. The stages of the parasite life cycle in both the insect vector and human host are well-known, but determinants of infection in the insect gut are complex and enigmatic. This paper examines the possible role of the R. prolixus gut agglutinins in the parasite life cycle. The results, derived from gut extracts made from R. prolixus fed on various diets with different vertebrate blood components, and cross adsorption experiments, showed for the first time that R. prolixus has two distinct gut agglutinins originating from their vertebrate blood meal, one for T. cruzi (the parasite agglutinin, PA) and the other for the erythrocytes (the hemagglutinin, HA). Again, uniquely, the results also demonstrate that these two agglutinins are derived, respectively, from the plasma and erythrocyte components of the vertebrate blood. Subsequent experiments, examining in more detail the nature of the plasma components forming the T. cruzi PA, used fractionated extracts of the vertebrate plasma (high density lipoprotein, HDL; low density lipoprotein, LDL, and delipidated plasma) in agglutination assays. The results confirmed the identity of the PA as a high density lipoprotein (HDL) in the plasma of the vertebrate blood meal which agglutinates parasites in the R. prolixus gut. In addition, the use of single or double labeled HDL in fluorescence and confocal microscopy showed the interaction of the labeled HDL with the parasite surface and its internalization at later times. Finally, results of T. cruzi parasitization of R. prolixus, incorporating various vertebrate blood components, resulted in highly significant increases in infectivity in the presence of HDL from the 2nd day of infection, thus confirming the important role of this molecule in T. cruzi infection of R. prolixus.
Assuntos
Doença de Chagas/parasitologia , Insetos Vetores/parasitologia , Lipoproteínas/fisiologia , Rhodnius/parasitologia , Trypanosoma cruzi/fisiologia , Aglutinação , Aglutininas/sangue , Aglutininas/fisiologia , Animais , Doença de Chagas/sangue , Doença de Chagas/transmissão , Galinhas , Eritrócitos/química , Eritrócitos/parasitologia , Hemaglutinação , Cavalos , Humanos , Lipoproteínas/sangue , Coelhos , OvinosRESUMO
The Aedes aegypti mosquito is one of the major vectors of arboviruses. These diseases have re-emerged and the insecticides used nowadays are toxic to mammals and environment and have only been effective in the short-term. In this context, natural products are an alternative. The genus Piper has many active compounds against arthropods, including neolignans. The present study evaluated the larvicidal potential of the n-hexanic extract of Piper solmsianum and eupomatenoid-6, identified by GC-MS and NMR techniques, from this extract against Ae. aegypti. The crude extract (100 µg/mL) killed 80% and 98.3% of larvae in the first and third day, respectively. Eupomatenoid-6 exhibited LD50 of 19.33 µM and LD90 of 28.68 µM and was then assayed in human fibroblast cells (MRC5), showing an IC50 of 39.30 µM with estimated LD50 of 42.26 mmol/kg. Our results indicate eupomatenoid-6 as a potent insecticide with relatively low toxicity for mammals.
Assuntos
Aedes , Benzofuranos/isolamento & purificação , Inseticidas/isolamento & purificação , Mosquitos Vetores/efeitos dos fármacos , Fenóis/isolamento & purificação , Piper/química , Extratos Vegetais/química , Animais , Benzofuranos/química , Fibroblastos/efeitos dos fármacos , Humanos , Inseticidas/química , Larva , Dose Letal Mediana , Lignanas , Estrutura Molecular , Fenóis/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Testes de ToxicidadeRESUMO
We evaluated the efficacy of the growth regulator triflumuron (TFM) in inducing mortality and disrupting both oviposition and egg hatching in Rhodnius prolixus adult females. TFM was administered via feeding, topically or by continuous contact with impregnated surfaces. Feeding resulted in mild biological effects compared with topical and impregnated surfaces. One day after treatment, the highest mortality levels were observed with topical surface and 30 days later both topical and impregnated surfaces induced higher mortalities than feeding. Oral treatment inhibited oviposition even at lower doses, and hatching of eggs deposited by treated females was similarly affected by the three delivery modes. Topical treatment of eggs deposited by nontreated females significantly reduced hatching. However, treatment per contact of eggs oviposited by untreated females did not disrupt eclosion. Additionally, oral treatment increased the number of immature oocytes per female, and topical treatment reduced the mean size of oocytes. TFM also affected carcass chitin content, diuresis, and innate immunity of treated insects. These results suggest that TFM acts as a potent growth inhibitor of R. prolixus adult females and has the potential to be used in integrated vector control programs against hematophagous triatomine species.
Assuntos
Benzamidas/farmacologia , Inseticidas/farmacologia , Reprodução/efeitos dos fármacos , Rhodnius/efeitos dos fármacos , Animais , Quitina/metabolismo , Diurese/efeitos dos fármacos , Ovos , Métodos de Alimentação , Feminino , Imunidade Inata/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oviposição/efeitos dos fármacosRESUMO
BACKGROUND: Triatomines, which are the vectors of Trypanosoma cruzi, have been considered to be exclusive blood feeders for more than 100 years, since the discovery of Chagas disease. METHODS: We offered artificial sugar meals to the laboratory model-insect Rhodnius prolixus, which is considered a strict haematophagous insect. We registered feeding by adding colorant to sugar meals. To assess putative phytophagy, fruits of the tomato Solanum lycopersicum were offered to R. prolixus and the presence of tomato DNA was assessed in the insects using PCR. We also assessed longevity, blood feeding and urine production of fruit-exposed triatomines and control insects. RESULTS: All instars of R. prolixus ingested sugar from artificial sugar meals in laboratory conditions. First instar R. prolixus ingested plant tissue from S. lycopersicum fruits, and this increased the amount of blood ingested and urine excreted. Decreased mortality was also observed after blood feeding. Exposure to S. lycopersicum increased longevity and reduced weight loss caused by desiccation. CONCLUSIONS: We describe here the first report of sugar feeding and phytophagy in a species that was considered to be a strict blood-feeder for over a century. We suggest that local plants might be not merely shelters for insects and vertebrate hosts as previously described, but may have a nutritional role for the maintenance of the triatomine vectors. The description of sugar and plant meals in triatomines opens new perspectives for the study and control of Chagas Disease.
Assuntos
Insetos Vetores , Rhodnius/fisiologia , Animais , Carboidratos , Corantes/análise , DNA de Plantas/análise , Comportamento Alimentar , Solanum lycopersicum , Coloração e RotulagemRESUMO
Antibiotic-resistant bacteria in hospitals and communities increasingly threaten public health in Brazil and the rest of the World. There is an urgent need for additional antimicrobial drugs. Calliphorid blowfly larvae are a rich source of antimicrobial factors but the potential of Neotropical species has been neglected. This preliminary study evaluates the antimicrobial activity of the native excretions/secretions of larvae of three species of Brazilian calliphorids, Chrysomya megacephala, Chrysomya albiceps and Chrysomya putoria. Native excretions/secretions were collected from third instar larvae, sterile filtered and tested for antibacterial activity against Staphylococcus aureus 9518, Escherichia coli K12 4401 and Serratia marcescens 365. Turbidometric assays were made in micro-plates, using an ELISA reader, with readings taken up to 22 h. Bacterial suspensions at the start and end of each experiment were also serially diluted, spread on nutrient agar plates and then colony forming units counted. The physico-chemical characteristics of the native excretions/secretions were also tested by freezing/thawing, boiling, and protease digestion. The native excretions/secretions of larvae from these three Chrysomya species significantly inhibited bacterial growth. Therefore, Brazilian calliphorid flies could potentially provide new classes of antibiotics.
Assuntos
Antibacterianos/farmacologia , Secreções Corporais , Dípteros/metabolismo , Descoberta de Drogas , Escherichia coli K12/efeitos dos fármacos , Larva/metabolismo , Serratia marcescens/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , BrasilRESUMO
BACKGROUND: Plants have been recognized as a good source of insecticidal agents, since they are able to produce their own defensives to insect attack. Moreover, there is a growing concern worldwide to develop pesticides with low impact to environment and non-target organisms. Hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea and its triterpenes were considered active against a cotton pest (Dysdercus peruvianus). Several natural products with insecticidal activity have poor water solubility, including triterpenes, and nanotechnology has emerged as a good alternative to solve this main problem. On this context, the aim of the present study was to develop an insecticidal nanoemulsion containing apolar fraction from fruits of Manilkara subsericea. RESULTS: It was obtained a formulation constituted by 5% of oil (octyldodecyl myristate), 5% of surfactants (sorbitan monooleate/polysorbate 80), 5% of apolar fraction from M. subsericea and 85% of water. Analysis of mean droplet diameter (155.2 ± 3.8 nm) confirmed this formulation as a nanoemulsion. It was able to induce mortality in D. peruvianus. It was observed no effect against acetylcholinesterase or mortality in mice induced by the formulation, suggesting the safety of this nanoemulsion for non-target organisms. CONCLUSIONS: The present study suggests that the obtained O/A nanoemulsion may be useful to enhance water solubility of poor water soluble natural products with insecticidal activity, including the hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea.
Assuntos
Emulsões/química , Heterópteros/efeitos dos fármacos , Inseticidas/química , Manilkara/química , Extratos Vegetais/química , Acetilcolinesterase/metabolismo , Animais , Emulsões/toxicidade , Feminino , Heterópteros/fisiologia , Inseticidas/toxicidade , Masculino , Camundongos , Extratos Vegetais/toxicidade , SolubilidadeRESUMO
Except for honey as food, and silk for clothing and pollination of plants, people give little thought to the benefits of insects in their lives. This overview briefly describes significant recent advances in developing insect natural products as potential new medicinal drugs. This is an exciting and rapidly expanding new field since insects are hugely variable and have utilised an enormous range of natural products to survive environmental perturbations for 100s of millions of years. There is thus a treasure chest of untapped resources waiting to be discovered. Insects products, such as silk and honey, have already been utilised for thousands of years, and extracts of insects have been produced for use in Folk Medicine around the world, but only with the development of modern molecular and biochemical techniques has it become feasible to manipulate and bioengineer insect natural products into modern medicines. Utilising knowledge gleaned from Insect Folk Medicines, this review describes modern research into bioengineering honey and venom from bees, silk, cantharidin, antimicrobial peptides, and maggot secretions and anticoagulants from blood-sucking insects into medicines. Problems and solutions encountered in these endeavours are described and indicate that the future is bright for new insect derived pharmaceuticals treatments and medicines.
RESUMO
BACKGROUND: Studies were carried out to evaluate the effects of Manilkara subsericea extracts and triterpenes on the development of two species of agricultural pest insects, Oncopelus fasciatus and Dysdercus peruvianus. RESULTS: All treatments of insects with M. subsericea extracts induced mortality, delayed development and inhibited moulting. Some extracts assayed (FH, FB and FD in D. peruvianus, and FH, FB and FEA in O. fasciatus) also produced body deformities in the few adults that emerged. Other extracts (FH, FEA, FB, FD and LET in both insects), however, induced either permanent (overaged) or extranumerary nymphs, both of which were unable to achieve the adult stage and reproductive status. The insects were also treated with triterpenes (α- and ß-amyrin acetates) which showed high lethality at 30 days after treatment and delayed the intermoult period so that overaged nymphs were detected. CONCLUSION: The results indicate that extracts and triterpenes from Manilkara subsericea act as potent growth inhibitors of phytophagous hemipteran nymphs. It is also concluded that the mixture of several different molecules in the extracts used produces synergic effects that do not occur after using the triterpenes (PFT) alone. These secondary metabolites in the M. subsericea extracts can potentially be used in integrated control programmes against crop pests.
Assuntos
Heterópteros/efeitos dos fármacos , Heterópteros/crescimento & desenvolvimento , Inseticidas/farmacologia , Manilkara/química , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Muda/efeitos dos fármacosRESUMO
BACKGROUND: Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera. METHODOLOGY/PRINCIPAL FINDINGS: Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE) and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster. CONCLUSIONS/SIGNIFICANCE: The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low complexity whose structure differs according to the vector genus.
Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Vetores de Doenças , Triatominae/microbiologia , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , América do SulRESUMO
The susceptibility of Aedes aegypti (L.) larvae from several Brazilian populations to the juvenile hormone analog methoprene and the organophosphate insecticide temephos were investigated. Populations from Natal (northeastern region), Macapá (northern region), and Jardim América, Rio de Janeiro (southeastern region) are temephos-resistant (RR90 = 24.4, 13.3, and 15.8, respectively), whereas populations from Presidente Prudente (southeastern region) and Porto Velho (northern region) exhibit only an incipient temephos-altered susceptibility status (RR90 = 1.8 and 2.6, respectively). Biochemical assays revealed alterations of the enzymes implicated in metabolic resistance, glutathione S-transferase, mixed function oxidases and esterases, among these populations. Dose-response assays showed at most a low resistance to methoprene of all populations tested, irrespective of their temephos resistance level. However, sequential exposure of Macapá and Natal populations to temephos and methoprene indicated a potential cross-resistance when larvae are exposed to both insecticides. Nevertheless, susceptibility of the Brazilian Ae. aegypti populations to methoprene alone suggests this insect growth regulator could substitute for temephos in the control of the dengue vector in the country.
Assuntos
Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Controle de Insetos/métodos , Inseticidas/toxicidade , Metoprene/toxicidade , Temefós/toxicidade , Acetilcolinesterase/metabolismo , Animais , Brasil , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismoRESUMO
Several Brazilian Aedes aegypti populations are resistant to the larvicidae temephos. Methoprene, that inhibits adult emergence, is one of the alternatives envisaged by the Brazilian Dengue Control Program (PNCD). However, at Brazil vector infestation rates are measured through larvae indexes and it has been claimed that methoprene use in the field could face operational problems. In order to define a standardized protocol, methoprene effect was evaluated in laboratory conditions after continuous exposure of larvae (Rockefeller strain) to a methoprene formulation available to the PNCD. Methoprene-derived mortality occurs mainly at the pupa stage and pupa development is inversely proportional to methoprene concentration. Number and viability of eggs laid by treated and control females are equivalent. A methoprene dose-dependent delay in the development was noted; however, strong correlations were found for total mortality or adult emergence inhibition if data obtained when all control mosquitoes have emerged are compared to data obtained when methoprene-treated groups finish development. The cumulative record of total methoprene-induced mortality at the time control adults emerge is proposed for routine evaluation of field populations. Mortality of all specimens, but not of larva, could account for adult emergence inhibition, confirming the inadequacy of larvae indexes to evaluate methoprene effect.