Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
2.
Yeast ; 41(4): 222-241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38433440

RESUMO

Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.


Assuntos
Saccharomyces cerevisiae , Transcrição Gênica , Humanos , Saccharomyces cerevisiae/genética , Cromatina , Fatores de Transcrição/genética , Regiões Promotoras Genéticas
3.
BMC Microbiol ; 22(1): 91, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392807

RESUMO

BACKGROUND: Obesity, metabolic disease and some psychiatric conditions are associated with changes to relative abundance of bacterial species and specific genes in the faecal microbiome. Little is known about the impact of pharmacologically induced weight loss on distinct microbiome species and their respective gene programs in obese individuals. METHODOLOGY: Using shotgun metagenomics, the composition of the microbiome was obtained for two cohorts of obese female Wistar rats (n = 10-12, total of 82) maintained on a high fat diet before and after a 42-day treatment with a panel of four investigatory or approved anti-obesity drugs (tacrolimus/FK506, bupropion, naltrexone and sibutramine), alone or in combination. RESULTS: Only sibutramine treatment induced consistent weight loss and improved glycaemic control in the obese rats. Weight loss was associated with reduced food intake and changes to the faecal microbiome in multiple microbial taxa, genes, and pathways. These include increased ß-diversity, increased relative abundance of multiple Bacteroides species, increased Bacteroides/Firmicutes ratio and changes to abundance of genes and species associated with obesity-induced inflammation, particularly those encoding components of the flagellum and its assembly. CONCLUSIONS: Sibutramine-induced weight loss in obese rats is associated with improved metabolic health, and changes to the faecal microbiome consistent with a reduction in obesity-induced bacterially-driven inflammation.


Assuntos
Microbioma Gastrointestinal , Animais , Bacteroides , Feminino , Inflamação , Obesidade/microbiologia , Ratos , Ratos Wistar , Redução de Peso
4.
Cell Rep ; 36(13): 109755, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34592154

RESUMO

Spt4 is a transcription elongation factor with homologs in organisms with nucleosomes. Structural and in vitro studies implicate Spt4 in transcription through nucleosomes, and yet the in vivo function of Spt4 is unclear. Here, we assess the precise position of Spt4 during transcription and the consequences of the loss of Spt4 on RNA polymerase II (RNAPII) dynamics and nucleosome positioning in Saccharomyces cerevisiae. In the absence of Spt4, the spacing between gene-body nucleosomes increases and RNAPII accumulates upstream of the nucleosomal dyad, most dramatically at nucleosome +2. Spt4 associates with elongating RNAPII early in transcription, and its association dynamically changes depending on nucleosome positions. Together, our data show that Spt4 regulates early elongation dynamics, participates in co-transcriptional nucleosome positioning, and promotes RNAPII movement through the gene-body nucleosomes, especially the +2 nucleosome.


Assuntos
Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/genética
5.
Mol Cell ; 81(17): 3542-3559.e11, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380014

RESUMO

The histone chaperone FACT occupies transcribed regions where it plays prominent roles in maintaining chromatin integrity and preserving epigenetic information. How it is targeted to transcribed regions, however, remains unclear. Proposed models include docking on the RNA polymerase II (RNAPII) C-terminal domain (CTD), recruitment by elongation factors, recognition of modified histone tails, and binding partially disassembled nucleosomes. Here, we systematically test these and other scenarios in Saccharomyces cerevisiae and find that FACT binds transcribed chromatin, not RNAPII. Through a combination of high-resolution genome-wide mapping, single-molecule tracking, and mathematical modeling, we propose that FACT recognizes the +1 nucleosome, as it is partially unwrapped by the engaging RNAPII, and spreads to downstream nucleosomes aided by the chromatin remodeler Chd1. Our work clarifies how FACT interacts with genes, suggests a processive mechanism for FACT function, and provides a framework to further dissect the molecular mechanisms of transcription-coupled histone chaperoning.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
6.
BMC Biol ; 19(1): 59, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766022

RESUMO

BACKGROUND: Evidence of global heterochromatin decay and aberrant gene expression in models of physiological and premature ageing have long supported the "heterochromatin loss theory of ageing", which proposes that ageing is aetiologically linked to, and accompanied by, a progressive, generalised loss of repressive epigenetic signatures. However, the remarkable plasticity of chromatin conformation suggests that the re-establishment of such marks could potentially revert the transcriptomic architecture of animal cells to a "younger" state, promoting longevity and healthspan. To expand our understanding of the ageing process and its connection to chromatin biology, we screened an RNAi library of chromatin-associated factors for increased longevity phenotypes. RESULTS: We identified the lysine demethylases jmjd-3.2 and utx-1, as well as the lysine methyltransferase mes-2 as regulators of both lifespan and healthspan in C. elegans. Strikingly, we found that both overexpression and loss of function of jmjd-3.2 and utx-1 are all associated with enhanced longevity. Furthermore, we showed that the catalytic activity of UTX-1, but not JMJD-3.2, is critical for lifespan extension in the context of overexpression. In attempting to reconcile the improved longevity associated with both loss and gain of function of utx-1, we investigated the alternative lifespan pathways and tissue specificity of longevity outcomes. We demonstrated that lifespan extension caused by loss of utx-1 function is daf-16 dependent, while overexpression effects are partially independent of daf-16. In addition, lifespan extension was observed when utx-1 was knocked down or overexpressed in neurons and intestine, whereas in the epidermis, only knockdown of utx-1 conferred improved longevity. CONCLUSIONS: We show that the regulation of longevity by chromatin modifiers can be the result of the interaction between distinct factors, such as the level and tissue of expression. Overall, we suggest that the heterochromatin loss model of ageing may be too simplistic an explanation of organismal ageing when molecular and tissue-specific effects are taken into account.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Histona Desmetilases/genética , Histona Desmetilases com o Domínio Jumonji/genética , Longevidade/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo
7.
EMBO J ; 39(22): e105604, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33034091

RESUMO

Cooling patients to sub-physiological temperatures is an integral part of modern medicine. We show that cold exposure induces temperature-specific changes to the higher-order chromatin and gene expression profiles of human cells. These changes are particularly dramatic at 18°C, a temperature synonymous with that experienced by patients undergoing controlled deep hypothermia during surgery. Cells exposed to 18°C exhibit largely nuclear-restricted transcriptome changes. These include the nuclear accumulation of mRNAs encoding components of the negative limbs of the core circadian clock, most notably REV-ERBα. This response is accompanied by compaction of higher-order chromatin and hindrance of mRNPs from engaging nuclear pores. Rewarming reverses chromatin compaction and releases the transcripts into the cytoplasm, triggering a pulse of negative limb gene proteins that reset the circadian clock. We show that cold-induced upregulation of REV-ERBα is sufficient to trigger this reset. Our findings uncover principles of the cellular cold response that must be considered for current and future applications involving therapeutic deep hypothermia.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Ritmo Circadiano/fisiologia , Temperatura Baixa , RNA Mensageiro/metabolismo , Linhagem Celular , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Técnicas de Inativação de Genes , Heterocromatina , Humanos , Hipotermia/cirurgia , Ativação Transcricional , Transcriptoma , Regulação para Cima
8.
Lancet Oncol ; 21(3): 398-411, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014119

RESUMO

BACKGROUND: The interim analysis of the multicentre New EPOC trial in patients with resectable colorectal liver metastasis showed a significant reduction in progression-free survival in patients allocated to cetuximab plus chemotherapy compared with those given chemotherapy alone. The focus of the present analysis was to assess the effect on overall survival. METHODS: New EPOC was a multicentre, open-label, randomised, controlled, phase 3 trial. Adult patients (aged ≥18 years) with KRAS wild-type (codons 12, 13, and 61) resectable or suboptimally resectable colorectal liver metastases and a WHO performance status of 0-2 were randomly assigned (1:1) to receive chemotherapy with or without cetuximab before and after liver resection. Randomisation was done centrally with minimisation factors of surgical centre, poor prognosis cancer, and previous adjuvant treatment with oxaliplatin. Chemotherapy consisted of oxaliplatin 85 mg/m2 administered intravenously over 2 h, l-folinic acid (175 mg flat dose administered intravenously over 2 h) or d,l-folinic acid (350 mg flat dose administered intravenously over 2 h), and fluorouracil bolus 400 mg/m2 administered intravenously over 5 min, followed by a 46 h infusion of fluorouracil 2400 mg/m2 repeated every 2 weeks (regimen one), or oxaliplatin 130 mg/m2 administered intravenously over 2 h and oral capecitabine 1000 mg/m2 twice daily on days 1-14 repeated every 3 weeks (regimen two). Patients who had received adjuvant oxaliplatin could receive irinotecan 180 mg/m2 intravenously over 30 min with fluorouracil instead of oxaliplatin (regimen three). Cetuximab was given intravenously, 500 mg/m2 every 2 weeks with regimen one and three or a loading dose of 400 mg/m2 followed by a weekly infusion of 250 mg/m2 with regimen two. The primary endpoint of progression-free survival was published previously. Secondary endpoints were overall survival, preoperative response, pathological resection status, and safety. Trial recruitment was halted prematurely on the advice of the Trial Steering Committee on Nov 1, 2012. All analyses (except safety) were done on the intention-to-treat population. Safety analyses included all randomly assigned patients. This trial is registered with ISRCTN, number 22944367. FINDINGS: Between Feb 26, 2007, and Oct 12, 2012, 257 eligible patients were randomly assigned to chemotherapy with cetuximab (n=129) or without cetuximab (n=128). This analysis was carried out 5 years after the last patient was recruited, as defined in the protocol, at a median follow-up of 66·7 months (IQR 58·0-77·5). Median progression-free survival was 22·2 months (95% CI 18·3-26·8) in the chemotherapy alone group and 15·5 months (13·8-19·0) in the chemotherapy plus cetuximab group (hazard ratio [HR] 1·17, 95% CI 0·87-1·56; p=0·304). Median overall survival was 81·0 months (59·6 to not reached) in the chemotherapy alone group and 55·4 months (43·5-71·5) in the chemotherapy plus cetuximab group (HR 1·45, 1·02-2·05; p=0·036). There was no significant difference in the secondary outcomes of preoperative response or pathological resection status between groups. Five deaths might have been treatment-related (one in the chemotherapy alone group and four in the chemotherapy plus cetuximab group). The most common grade 3-4 adverse events reported were: neutrophil count decreased (26 [19%] of 134 in the chemotherapy alone group vs 21 [15%] of 137 in the chemotherapy plus cetuximab group), diarrhoea (13 [10%] vs 14 [10%]), skin rash (one [1%] vs 22 [16%]), thromboembolic events (ten [7%] vs 11 [8%]), lethargy (ten [7%] vs nine [7%]), oral mucositis (three [2%] vs 14 [10%]), vomiting (seven [5%] vs seven [5%]), peripheral neuropathy (eight [6%] vs five [4%]), and pain (six [4%] vs six [4%]). INTERPRETATION: Although the addition of cetuximab to chemotherapy improves the overall survival in some studies in patients with advanced, inoperable metastatic disease, its use in the perioperative setting in patients with operable disease confers a significant disadvantage in terms of overall survival. Cetuximab should not be used in this setting. FUNDING: Cancer Research UK.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Idoso , Capecitabina/administração & dosagem , Cetuximab/administração & dosagem , Neoplasias Colorretais/patologia , Feminino , Fluoruracila/administração & dosagem , Seguimentos , Humanos , Irinotecano/administração & dosagem , Leucovorina/administração & dosagem , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Oxaliplatina/administração & dosagem , Prognóstico , Taxa de Sobrevida
9.
Mol Cell ; 76(1): 110-125.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31474573

RESUMO

Failure to make adaptive immune responses is a hallmark of aging. Reduced B cell function leads to poor vaccination efficacy and a high prevalence of infections in the elderly. Here we show that reduced autophagy is a central molecular mechanism underlying immune senescence. Autophagy levels are specifically reduced in mature lymphocytes, leading to compromised memory B cell responses in old individuals. Spermidine, an endogenous polyamine metabolite, induces autophagy in vivo and rejuvenates memory B cell responses. Mechanistically, spermidine post-translationally modifies the translation factor eIF5A, which is essential for the synthesis of the autophagy transcription factor TFEB. Spermidine is depleted in the elderly, leading to reduced TFEB expression and autophagy. Spermidine supplementation restored this pathway and improved the responses of old human B cells. Taken together, our results reveal an unexpected autophagy regulatory mechanism mediated by eIF5A at the translational level, which can be harnessed to reverse immune senescence in humans.


Assuntos
Autofagia/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Senescência Celular/efeitos dos fármacos , Imunossenescência/efeitos dos fármacos , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Espermidina/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Fatores Etários , Envelhecimento , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células HEK293 , Humanos , Memória Imunológica/efeitos dos fármacos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fator de Iniciação de Tradução Eucariótico 5A
10.
Front Genet ; 9: 578, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555512

RESUMO

The Yeast Metabolic Cycle (YMC) is a model system in which levels of around 60% of the yeast transcripts cycle over time. The spatial and temporal resolution provided by the YMC has revealed that changes in the yeast metabolic landscape and chromatin status can be related to cycling gene expression. However, the interplay between histone modifications and transcription factor activity during the YMC is still poorly understood. Here we apply an innovative statistical approach to integrate chromatin state (ChIP-seq) and gene expression (RNA-seq) data to investigate the transcriptional control during the YMC. By using the multivariate regression models N-PLS (Partial Least Squares) and MORE (Multi-Omics REgulation) methodologies, we assessed the contribution of histone marks and transcription factors to the regulation of gene expression in the YMC. We found that H3K18ac and H3K9ac were the most important histone modifications, whereas Sfp1, Hfi1, Pip2, Mig2, and Yhp1 emerged as the most relevant transcription factors. A significant association in the co-regulation of gene expression was found between H3K18ac and the transcription factors Pip2 (involved in fatty acids metabolism), Xbp1 (cyclin implicated in the regulation of carbohydrate and amino acid metabolism), and Hfi1 (involved in the formation of the SAGA complex). These results evidence the crucial role of histone lysine acetylation levels in the regulation of gene expression in the YMC through the coordinated action of transcription factors and lysine acetyltransferases.

11.
Front Genet ; 9: 493, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405699

RESUMO

Mutations in genes encoding enzymes of the tricarboxylic acid cycle often contribute to cancer development and progression by disrupting cell metabolism and altering the epigenetic landscape. This is exemplified by the isoforms of isocitrate dehydrogenase (IDH1/2), which metabolize isocitrate to α-Ketoglutarate (α-KG). Gain of function mutations in IDH1 or IDH2 result in reduced levels of α-KG as a result of increased formation of D-2-Hydroxyglutarate (2-HG). α-KG is an essential co-factor for certain histone and DNA demethylases, while 2-HG is a competitive inhibitor. These IDH1/2 mutations are thought to result in hypermethylated histones and DNA which in turn alters gene expression and drives cancer progression. While this model seems to be generally accepted in the field, the exact molecular mechanisms still remain elusive. How much of this model has been rigorously demonstrated and what is just being assumed? Are the effects genome-wide or focused on specific loci? This Perspective aims at elucidating the key questions that remain to be addressed, the experimental techniques that could be used to gain further insight into the molecular mechanisms involved and the additional consequences of these mutations beyond DNA and protein methylation.

13.
Mol Syst Biol ; 14(2): e8007, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29440389

RESUMO

Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1, high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner.


Assuntos
Cromatina/genética , RNA Antissenso/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Citoplasma/genética , Galactoquinase/genética , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Hibridização in Situ Fluorescente , Estabilidade de RNA , RNA Fúngico/genética , RNA Mensageiro/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
14.
Elife ; 62017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058669

RESUMO

CRISPRi, an adapted CRISPR-Cas9 system, is proposed to act as a strand-specific roadblock to repress transcription in eukaryotic cells using guide RNAs (sgRNAs) to target catalytically inactive Cas9 (dCas9) and offers an alternative to genetic interventions for studying pervasive antisense transcription. Here, we successfully use click chemistry to construct DNA templates for sgRNA expression and show, rather than acting simply as a roadblock, sgRNA/dCas9 binding creates an environment that is permissive for transcription initiation/termination, thus generating novel sense and antisense transcripts. At HMS2 in Saccharomyces cerevisiae, sgRNA/dCas9 targeting to the non-template strand for antisense transcription results in antisense transcription termination, premature termination of a proportion of sense transcripts and initiation of a novel antisense transcript downstream of the sgRNA/dCas9-binding site. This redefinition of the transcriptional landscape by CRISPRi demonstrates that it is not strand-specific and highlights the controls and locus understanding required to properly interpret results from CRISPRi interventions.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Fúngico/metabolismo , Endonucleases/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR , Endonucleases/genética , Ligação Proteica , Saccharomyces cerevisiae/metabolismo
15.
PLoS One ; 12(7): e0179813, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28727758

RESUMO

The traditional Indian medicine, Ayurveda, provides insights and practical solutions towards a healthy life style. Rasayana is a branch of Ayurveda known for preserving and promoting health, enhancing the quality of life and delaying the aging process. In the traditional knowledge, the Rasayana herb, Chlorophytum borivilianum (C. borivilanum) is regarded as a general health promoting tonic that delays aging and increases lifespan, cognitive function and physical strength. Aging is a complex and multifactorial physiological phenomenon that manifests itself over a wide range of biological systems, tissues, and functions. Longevity is an obvious marker of physiological aging. Simple model systems such as the single-cell budding yeast Saccharomyces cerevisiae (S. cerevisiae) and the nematode, Caenorhabditis elegans (C. elegans) are widely used to study the aging process and longevity. Here, we show that a polysaccharide fraction obtained from C. borivilianum increases the lifespan of S. cerevisiae and C. elegans, using an automated screening platform (ChronoscreenTM). Chemical analysis of this extract revealed a low molecular weight polysaccharide of 1000 Da, predominantly comprising Glu1→6Glu linkage. This polysaccharide showed significant dose-dependent extension of the median lifespan of S. cerevisiae by up to 41% and of the median lifespan of C. elegans by up to 10%. Taking cue from these results and the traditionally described benefits of Rasayanas on skin rejuvenation, we tested in vitro the polysaccharide for potential skin benefits. In a keratinocyte culture, we observed that this polysaccharide increased cell proliferation significantly, and induced synthesis of hyaluronic acid (HA), a well-known extracellular matrix component. Furthermore, when added to culture medium of human reconstructed epidermis, we observed an enhanced production of epidermal markers, e.g. CD44 and HA that are otherwise diminished in aged skin. Together, these results suggest that in addition to life-span extension of S. cerevisiae and C. elegans, a polysaccharide from the Rasayana herb, C. borivilianum may have beneficial effects on skin aging parameters.


Assuntos
Asparagaceae , Longevidade/efeitos dos fármacos , Ayurveda , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Envelhecimento , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Queratinócitos/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos
16.
Health Technol Assess ; 21(32): 1-86, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28641703

RESUMO

BACKGROUND: Intensive follow-up after surgery for colorectal cancer is common practice but lacks a firm evidence base. OBJECTIVE: To assess whether or not augmenting symptomatic follow-up in primary care with two intensive methods of follow-up [monitoring of blood carcinoembryonic antigen (CEA) levels and scheduled imaging] is effective and cost-effective in detecting the recurrence of colorectal cancer treatable surgically with curative intent. DESIGN: Randomised controlled open-label trial. Participants were randomly assigned to one of four groups: (1) minimum follow-up (n = 301), (2) CEA testing only (n = 300), (3) computerised tomography (CT) only (n = 299) or (4) CEA testing and CT (n = 302). Blood CEA was measured every 3 months for 2 years and then every 6 months for 3 years; CT scans of the chest, abdomen and pelvis were performed every 6 months for 2 years and then annually for 3 years. Those in the minimum and CEA testing-only arms had a single CT scan at 12-18 months. The groups were minimised on adjuvant chemotherapy, gender and age group (three strata). SETTING: Thirty-nine NHS hospitals in England with access to high-volume services offering surgical treatment of metastatic recurrence. PARTICIPANTS: A total of 1202 participants who had undergone curative treatment for Dukes' stage A to C colorectal cancer with no residual disease. Adjuvant treatment was completed if indicated. There was no evidence of metastatic disease on axial imaging and the post-operative blood CEA level was ≤ 10 µg/l. MAIN OUTCOME MEASURES: Primary outcome Surgical treatment of recurrence with curative intent. Secondary outcomes Time to detection of recurrence, survival after treatment of recurrence, overall survival and quality-adjusted life-years (QALYs) gained. RESULTS: Detection of recurrence During 5 years of scheduled follow-up, cancer recurrence was detected in 203 (16.9%) participants. The proportion of participants with recurrence surgically treated with curative intent was 6.3% (76/1202), with little difference according to Dukes' staging (stage A, 5.1%; stage B, 7.4%; stage C, 5.6%; p = 0.56). The proportion was two to three times higher in each of the three more intensive arms (7.5% overall) than in the minimum follow-up arm (2.7%) (difference 4.8%; p = 0.003). Surgical treatment of recurrence with curative intent was 2.7% (8/301) in the minimum follow-up group, 6.3% (19/300) in the CEA testing group, 9.4% (28/299) in the CT group and 7.0% (21/302) in the CEA testing and CT group. Surgical treatment of recurrence with curative intent was two to three times higher in each of the three more intensive follow-up groups than in the minimum follow-up group; adjusted odds ratios (ORs) compared with minimum follow-up were as follows: CEA testing group, OR 2.40, 95% confidence interval (CI) 1.02 to 5.65; CT group, OR 3.69, 95% CI 1.63 to 8.38; and CEA testing and CT group, OR 2.78, 95% CI 1.19 to 6.49. Survival A Kaplan-Meier survival analysis confirmed no significant difference between arms (log-rank p = 0.45). The baseline-adjusted Cox proportional hazards ratio comparing the minimum and intensive arms was 0.87 (95% CI 0.67 to 1.15). These CIs suggest a maximum survival benefit from intensive follow-up of 3.8%. Cost-effectiveness The incremental cost per patient treated surgically with curative intent compared with minimum follow-up was £40,131 with CEA testing, £43,392 with CT and £85,151 with CEA testing and CT. The lack of differential impact on survival resulted in little difference in QALYs saved between arms. The additional cost per QALY gained of moving from minimum follow-up to CEA testing was £25,951 and for CT was £246,107. When compared with minimum follow-up, combined CEA testing and CT was more costly and generated fewer QALYs, resulting in a negative incremental cost-effectiveness ratio (-£208,347) and a dominated policy. LIMITATIONS: Although this is the largest trial undertaken at the time of writing, it has insufficient power to assess whether or not the improvement in detecting treatable recurrence achieved by intensive follow-up leads to a reduction in overall mortality. CONCLUSIONS: Rigorous staging to detect residual disease is important before embarking on follow-up. The benefit of intensive follow-up in detecting surgically treatable recurrence is independent of stage. The survival benefit from intensive follow-up is unlikely to exceed 4% in absolute terms and harm cannot be absolutely excluded. A longer time horizon is required to ascertain whether or not intensive follow-up is an efficient use of scarce health-care resources. Translational analyses are under way, utilising tumour tissue collected from Follow-up After Colorectal Surgery trial participants, with the aim of identifying potentially prognostic biomarkers that may guide follow-up in the future. TRIAL REGISTRATION: Current Controlled Trials ISRCTN41458548. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 21, No. 32. See the NIHR Journals Library website for further project information.


Assuntos
Antígeno Carcinoembrionário/economia , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico por imagem , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/economia , Idoso , Antígeno Carcinoembrionário/sangue , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/cirurgia , Análise Custo-Benefício , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Anos de Vida Ajustados por Qualidade de Vida , Medicina Estatal/economia , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos , Reino Unido
17.
Mol Cell ; 65(4): 685-698.e8, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28190769

RESUMO

RNA polymerase II (Pol2) movement through chromatin and the co-transcriptional processing and fate of nascent transcripts is coordinated by transcription elongation factors (TEFs) such as polymerase-associated factor 1 (Paf1), but it is not known whether TEFs have gene-specific functions. Using strand-specific nucleotide resolution techniques, we show that levels of Paf1 on Pol2 vary between genes, are controlled dynamically by environmental factors via promoters, and reflect levels of processing and export factors on the encoded transcript. High levels of Paf1 on Pol2 promote transcript nuclear export, whereas low levels reflect nuclear retention. Strains lacking Paf1 show marked elongation defects, although low levels of Paf1 on Pol2 are sufficient for transcription elongation. Our findings support distinct Paf1 functions: a core general function in transcription elongation, satisfied by the lowest Paf1 levels, and a regulatory function in determining differential transcript fate by varying the level of Paf1 on Pol2.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Genótipo , Mutação , Proteínas Nucleares/genética , Fenótipo , Fosforilação , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
18.
Bioessays ; 39(1): 1-12, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28004446

RESUMO

Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an 'activating' histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome-wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady-state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time-resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination.


Assuntos
Histonas/metabolismo , Ativação Transcricional , Animais , Eucariotos/genética , Eucariotos/metabolismo , Histonas/química , Humanos , Metilação
19.
Nat Struct Mol Biol ; 23(12): 1035-1044, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922609

RESUMO

Metabolic cycles result from the partitioning of oxidative and reductive metabolism into rhythmic phases of gene expression and oscillating post-translational protein modifications. Relatively little is known about how these switches in gene expression are controlled, although recent studies have suggested that transcription itself may play a central role. This review explores the molecular basis of the metabolic and gene-expression oscillations in the yeast Saccharomyces cerevisiae, as well as how they relate to other biological time-keeping mechanisms, such as circadian rhythms.


Assuntos
Ritmo Circadiano , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Animais , Humanos , Periodicidade , Saccharomyces cerevisiae/citologia , Ativação Transcricional , Ritmo Ultradiano
20.
Cell ; 167(5): 1201-1214.e15, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863241

RESUMO

Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Complexos Multiproteicos/metabolismo , RNA Polimerase II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA