Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513938

RESUMO

Quaternary ammonium palmitoyl glycol chitosan (GCPQ) has already shown beneficial drug delivery properties and has been studied as a carrier for anticancer agents. Consequently, we synthesised cytotoxic platinum(IV) conjugates of cisplatin, carboplatin and oxaliplatin by coupling via amide bonds to five GCPQ polymers differing in their degree of palmitoylation and quaternisation. The conjugates were characterised by 1H and 195Pt NMR spectroscopy as well as inductively coupled plasma mass spectrometry (ICP-MS), the latter to determine the amount of platinum(IV) units per GCPQ polymer. Cytotoxicity was evaluated by the MTT assay in three human cancer cell lines (A549, non-small-cell lung carcinoma; CH1/PA-1, ovarian teratocarcinoma; SW480, colon adenocarcinoma). All conjugates displayed a high increase in their cytotoxic activity by factors of up to 286 times compared to their corresponding platinum(IV) complexes and mostly outperformed the respective platinum(II) counterparts by factors of up to 20 times, also taking into account the respective loading of platinum(IV) units per GCPQ polymer. Finally, a biodistribution experiment was performed with an oxaliplatin-based GCPQ conjugate in non-tumour-bearing BALB/c mice revealing an increased accumulation in lung tissue. These findings open promising opportunities for further tumouricidal activity studies especially focusing on lung tissue.

2.
Nanomaterials (Basel) ; 12(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889699

RESUMO

Gold nanoparticles (AuNPs) are continuing to gain popularity in the field of nanotechnology. New methods are continuously being developed to tune the particles' physicochemical properties, resulting in control over their biological fate and applicability to in vivo diagnostics and therapy. This review focuses on the effects of varying particle size on optical properties, opsonization, cellular internalization, renal clearance, biodistribution, tumor accumulation, and toxicity. We review the common methods of synthesizing ultrasmall AuNPs, as well as the emerging constructs termed ultrasmall-in-nano-an approach which promises to provide the desirable properties from both ends of the AuNP size range. We review the various applications and outcomes of ultrasmall-in-nano constructs in vitro and in vivo.

3.
Int J Pharm ; 618: 121658, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35292396

RESUMO

Levodopa (L-DOPA) is an oral Parkinson's Disease drug that generates the active metabolite - dopamine (DA) in vivo. However, oral L-DOPA exhibits low oral bioavailability, limited brain uptake, peripheral DA-mediated side effects and its poor brain bioavailability can lead to long-term complications. Here we show that L-DOPA forms stable (for at least 5 months) 300 nm nanoparticles when encapsulated within N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ). A nano-in-microparticle GCPQ-L-DOPA formulation (D50 = 7.2 µm), prepared by spray-drying, was stable for one month when stored at room and refrigeration temperatures and was capable of producing the original GCPQ-L-DOPA nanoparticles upon aqueous reconstitution. Nasal administration of reconstituted GCPQ-L-DOPA nanoparticles to rats resulted in significantly higher DA levels in the brain (Cmax of 94 ng g-1 above baseline levels 2 h post-dosing) when compared to nasal administration of L-DOPA alone, with DA being undetectable in the brain with the latter. Furthermore, nasal GCPQ-L-DOPA resulted in higher levels of L-DOPA in the plasma (a 17-fold increase in the Cmax, when compared to L-DOPA alone) with DA undetectable in the plasma from both formulations. These data provide evidence of effective delivery of DA to the brain with the GCPQ-L-DOPA formulation.


Assuntos
Levodopa , Doença de Parkinson , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Dopamina , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Ratos
4.
Sci Rep ; 11(1): 20012, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625610

RESUMO

There are currently no cures for coronavirus infections, making the prevention of infections the only course open at the present time. The COVID-19 pandemic has been difficult to prevent, as the infection is spread by respiratory droplets and thus effective, scalable and safe preventive interventions are urgently needed. We hypothesise that preventing viral entry into mammalian nasal epithelial cells may be one way to limit the spread of COVID-19. Here we show that N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ), a positively charged polymer that has been through an extensive Good Laboratory Practice toxicology screen, is able to reduce the infectivity of SARS-COV-2 in A549ACE2+ and Vero E6 cells with a log removal value of - 3 to - 4 at a concentration of 10-100 µg/ mL (p < 0.05 compared to untreated controls) and to limit infectivity in human airway epithelial cells at a concentration of 500 µg/ mL (p < 0.05 compared to untreated controls). In vivo studies using transgenic mice expressing the ACE-2 receptor, dosed nasally with SARS-COV-2 (426,000 TCID50/mL) showed a trend for nasal GCPQ (20 mg/kg) to inhibit viral load in the respiratory tract and brain, although the study was not powered to detect statistical significance. GCPQ's electrostatic binding to the virus, preventing viral entry into the host cells, is the most likely mechanism of viral inhibition. Radiolabelled GCPQ studies in mice show that at a dose of 10 mg/kg, GCPQ has a long residence time in mouse nares, with 13.1% of the injected dose identified from SPECT/CT in the nares, 24 h after nasal dosing. With a no observed adverse effect level of 18 mg/kg in rats, following a 28-day repeat dose study, clinical testing of this polymer, as a COVID-19 prophylactic is warranted.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Sprays Nasais , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , Antivirais/administração & dosagem , Chlorocebus aethiops , Humanos , Masculino , Metilação , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , SARS-CoV-2/fisiologia , Tensoativos/administração & dosagem , Tensoativos/uso terapêutico , Células Vero , Carga Viral/efeitos dos fármacos
5.
Nanomaterials (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578495

RESUMO

Gold nanoparticles (AuNPs) are used experimentally for non-invasive in vivo Raman monitoring because they show a strong absorbance in the phototherapeutic window (650-850 nm), a feature that is accompanied by a particle size in excess of 100 nm. However, these AuNPs cannot be used clinically because they are likely to persist in mammalian systems and resist excretion. In this work, clustered ultrasmall (sub-5 nm) AuNP constructs for in vivo Raman diagnostic monitoring, which are also suitable for mammalian excretion, were synthesized and characterized. Sub-5 nm octadecyl amine (ODA)-coated AuNPs were clustered using a labile dithiol linker: ethylene glycol bis-mercaptoacetate (EGBMA). Upon clustering via a controlled reaction and finally coating with a polymeric amphiphile, a strong absorbance in the phototherapeutic window was demonstrated, thus showing the potential suitability of the construct for non-invasive in vivo detection and monitoring. The clusters, when labelled with a biphenyl-4-thiol (BPT) Raman tag, were shown to elicit a specific Raman response in plasma and to disaggregate back to sub-5 nm particles under physiological conditions (37 °C, 0.8 mM glutathione, pH 7.4). These data demonstrate the potential of these new AuNP clusters (Raman NanoTheranostics-RaNT) for in vivo applications while being in the excretable size window.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA