Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(11): 6515-6521, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28463504

RESUMO

Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO2 sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO2, suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO2 sequestration.


Assuntos
Dióxido de Carbono , Difração de Nêutrons , Adsorção , Nêutrons , Espalhamento a Baixo Ângulo
2.
Soft Matter ; 13(15): 2738-2748, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28217774

RESUMO

In this work we investigated the behaviour of stimuli-responsive poly(N-vinylcaprolactam) (PVCL) microgels in poly(ethylene glycol) (PEGs) with a linear architecture. We performed small-angle neutron scattering (SANS) experiments at two different microgel concentrations and various temperatures. The results were compared with those on PVCL microgels in water. PVCL in PEG (molecular weight MW = 2 kg mol-1) exhibits a volume phase transition temperature (VPTT) at a temperature between 160 and 180 °C. The diameter of the swollen microgel is only slightly smaller than in water. Furthermore, with increasing molecular weight of the surrounding polymer matrices fewer chains penetrate the microgel particles. In agreement with that, we identify a decreasing diameter with increasing molecular weight. In the short chain polymers up to MW = 3 kg mol-1, PVCL is well dispersed in the matrices with only minor signatures of agglomeration. For the well dispersed systems, we find unperturbed chain conformation of the PEG. Our results clearly show that the miscibility of PVCL and PEG disappears in a molecular weight range of 3 to 10 kg mol-1.

3.
Langmuir ; 32(12): 2891-9, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26938640

RESUMO

A quaternary system composed of surfactant, cosurfactant, oil, and water showing spontaneous motion of the oil-water interface under far-from-equilibrium condition is studied in order to understand nanometer-scale structures and their roles in spontaneous motion. The interfacial motion is characterized by the repetitive extension and retraction of spherical protrusions at the interface, i.e, blebbing motion. During the blebbing motion, elastic aggregates are accumulated, which were characterized as surfactant lamellar structures with mean repeat distances d of 25 to 40 nm. Still unclear is the relationship between the structure formation and the dynamics of the interfacial motion. In the present study, we find that a new lamellar structure with d larger than 80 nm is formed at the blebbing oil-water interface, while the resultant elastic aggregates, which are the one reported before, have a lamellar structure with smaller d (25 to 40 nm). Such transition of lamellar structures from the larger d to smaller d is induced by a penetration of surfactants from an aqueous phase into the aggregates. We propose a model in which elastic stress generated by the transition drives the blebbing motion at the interface. The present results explain the link between nanometer-scale transition of lamellar structure and millimeter-scale dynamics at an oil-water interface.

4.
ACS Macro Lett ; 5(4): 523-527, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35607227

RESUMO

Chain behavior has been determined in polymer nanocomposites (PNCs) comprised of well-dispersed 12 nm diameter silica nanoparticles (NPs) in poly(methyl methacrylate) (PMMA) matrices by Small-Angle Neutron Scattering (SANS) measurements under the Zero Average Contrast (ZAC) condition. In particular, we directly characterize the bound polymer layer surrounding the NPs, revealing the bound layer profile. The SANS spectra in the high-q region also show no significant change in the bulk polymer radius of gyration on the addition of the NPs. We thus suggest that the bulk polymer conformation in PNCs should generally be determined using the high q region of SANS data.

5.
Langmuir ; 30(33): 9985-90, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25084807

RESUMO

The structure of deterministically nanopatterned surfaces created using a combination of electron beam lithography and reactive ion etching was evaluated using small-angle neutron scattering (SANS). Samples exhibit 2D neutron scattering patterns that confirm the presence of ordered nanoscale cavities consistent with the targeted morphologies as well as with SEM data analysis. Comparison of SANS intensities obtained from samples in air and in contact with an aqueous phase (pure deuterium oxide, D2O, or a contrast matched mixture of D2O + H2O) reveals formation of stable gaseous nanobubbles trapped inside the cavities. The relative volume of nanobubbles depends strongly on the hydrophobicity of the cavity walls. In the case of hydrophobic surfaces, nanobubbles occupy up to 87% of the total cavity volume. The results demonstrate the high degree of sensitivity of SANS measurements for detecting and characterizing nano- and mesoscale bubbles with the volume fraction as low as ∼10(-6).

6.
ACS Nano ; 8(3): 2495-503, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24547779

RESUMO

Experimental studies showed the impact of the electrolyte solvents on both the ion transport and the specific capacitance of microporous carbons. However, the related structure-property relationships remain largely unclear and the reported results are inconsistent. The details of the interactions of the charged carbon pore walls with electrolyte ions and solvent molecules at a subnanometer scale are still largely unknown. Here for the first time we utilize in situ small angle neutron scattering (SANS) to reveal the electroadsorption of organic electrolyte ions in carbon pores of different sizes. A 1 M solution of tetraethylammonium tetrafluoroborate (TEATFB) salt in deuterated acetonitrile (d-AN) was used in an activated carbon with the pore size distribution similar to that of the carbons used in commercial double layer capacitors. In spite of the incomplete wetting of the smallest carbon pores by the d-AN, we observed enhanced ion sorption in subnanometer pores under the applied potential. Such results suggest the visible impact of electrowetting phenomena counterbalancing the high energy of the carbon/electrolyte interface in small pores. This behavior may explain the characteristic butterfly wing shape of the cyclic voltammetry curve that demonstrates higher specific capacitance at higher applied potentials, when the smallest pores become more accessible to electrolyte. Our study outlines a general methodology for studying various organic salts-solvent-carbon combinations.

7.
Phys Rev Lett ; 109(6): 067801, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006305

RESUMO

Using small-angle neutron scattering, we explored the conformational behavior of a polymer in a mixture of good solvents near their critical demixing temperature T(C). Experiments at full and zero average neutron contrast were used to study the correlation length of concentration fluctuations ξ and the radius of gyration R(g) of individual polymer coils as a function of temperature T. The results confirm a theoretically predicted partial collapse followed by reswelling of polymer coils to the original dimensions as T→T(C). Reswelling begins when ξ becomes comparable to the R(g) of the polymer.

8.
Langmuir ; 28(32): 11850-7, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22738225

RESUMO

The solution structures of three types of isolated lignin--organosolv (OS), Kraft (K), and low sulfonate (LS)--before and after treatment with 1-ethyl-3-methylimidazolium acetate were studied using small-angle neutron scattering (SANS) and dynamic light scattering (DLS) over a concentration range of 0.3-2.4 wt %. The results indicate that each of these lignins is comprised of aggregates of well-defined basal subunits, the shapes and sizes of which, in D(2)O and DMSO-d(6), are revealed using these techniques. LS lignin contains a substantial amount of nanometer-scale individual subunits. In aqueous solution these subunits have a well-defined elongated shape described well by ellipsoidal and cylindrical models. At low concentration the subunits are highly expanded in alkaline solution, and the effect is screened with increasing concentration. OS lignin dissolved in DMSO was found to consist of a narrow distribution of aggregates with average radius 200 ± 30 nm. K lignin in DMSO consists of aggregates with a very broad size distribution. After ionic liquid (IL) treatment, LS lignin subunits in alkaline solution maintained the elongated shape but were reduced in size. IL treatment of OS and K lignins led to the release of nanometer-scale subunits with well-defined size and shape.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Lignina/química , Soluções , Ácidos Sulfônicos/química
9.
J Am Chem Soc ; 133(35): 13794-7, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21819066

RESUMO

In-situ small-angle neutron scattering studies of H(2) confined in small pores of polyfurfuryl alcohol-derived activated carbon at room temperature have provided for the first time its phase behavior in equilibrium with external H(2) at pressures up to 200 bar. The data were used to evaluate the density of the adsorbed fluid, which appears to be a function of both pore size and pressure and is comparable to the density of liquid H(2) in narrow nanopores at ∼200 bar. The surface-molecule interactions responsible for densification of H(2) within the pores create internal pressures that exceed the external gas pressure by a factor of up to ∼50, confirming the benefits of adsorptive storage over compressive storage. These results can be used to guide the development of new carbon adsorbents tailored for maximum H(2) storage capacities at near-ambient temperatures.

10.
Bioresour Technol ; 102(13): 6928-36, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21531133

RESUMO

Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contrast to AFEX, the native crystal structure of the recovered corn stover from IL pretreatment was significantly disrupted. For both techniques, more than 70% of the theoretical sugar yield was attained after 48 h of hydrolysis using commercial enzyme cocktails. IL pretreatment requires less enzyme loading and a shorter hydrolysis time to reach 90% yields. Hemicellulase addition led to significant improvements in the yields of glucose and xylose for AFEX pretreated corn stover, but not for IL pretreated stover. These results provide new insights into the mechanisms of IL and AFEX pretreatment, as well as the advantages and disadvantages of each.


Assuntos
Amônia/farmacologia , Biotecnologia/métodos , Fenômenos Químicos/efeitos dos fármacos , Enzimas/metabolismo , Líquidos Iônicos/farmacologia , Resíduos/análise , Zea mays/efeitos dos fármacos , Biomassa , Carboidratos/química , Celulose/análise , Cristalização , Hidrólise/efeitos dos fármacos , Lignina/análise , Difração de Nêutrons , Porosidade/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície/efeitos dos fármacos
11.
Biomacromolecules ; 12(4): 933-41, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21361369

RESUMO

Cellulose is inherently resistant to breakdown, and the native crystalline structure (cellulose I) of cellulose is considered to be one of the major factors limiting its potential in terms of cost-competitive lignocellulosic biofuel production. Here we report the impact of ionic liquid pretreatment on the cellulose crystalline structure in different feedstocks, including microcrystalline cellulose (Avicel), switchgrass (Panicum virgatum), pine ( Pinus radiata ), and eucalyptus ( Eucalyptus globulus ), and its influence on cellulose hydrolysis kinetics of the resultant biomass. These feedstocks were pretreated using 1-ethyl-3-methyl imidazolium acetate ([C2mim][OAc]) at 120 and 160 °C for 1, 3, 6, and 12 h. The influence of the pretreatment conditions on the cellulose crystalline structure was analyzed by X-ray diffraction (XRD). On a larger length scale, the impact of ionic liquid pretreatment on the surface roughness of the biomass was determined by small-angle neutron scattering (SANS). Pretreatment resulted in a loss of native cellulose crystalline structure. However, the transformation processes were distinctly different for Avicel and for the biomass samples. For Avicel, a transformation to cellulose II occurred for all processing conditions. For the biomass samples, the data suggest that pretreatment for most conditions resulted in an expanded cellulose I lattice. For switchgrass, first evidence of cellulose II only occurred after 12 h of pretreatment at 120 °C. For eucalyptus, first evidence of cellulose II required more intense pretreatment (3 h at 160 °C). For pine, no clear evidence of cellulose II content was detected for the most intense pretreatment conditions of this study (12 h at 160 °C). Interestingly, the rate of enzymatic hydrolysis of Avicel was slightly lower for pretreatment at 160 °C compared with pretreatment at 120 °C. For the biomass samples, the hydrolysis rate was much greater for pretreatment at 160 °C compared with pretreatment at 120 °C. The result for Avicel can be explained by more complete conversion to cellulose II upon precipitation after pretreatment at 160 °C. By comparison, the result for the biomass samples suggests that another factor, likely lignin-carbohydrate complexes, also impacts the rate of cellulose hydrolysis in addition to cellulose crystallinity.


Assuntos
Biomassa , Celulose/química , Enzimas/química , Configuração de Carboidratos , Cristalografia por Raios X , Hidrólise , Propriedades de Superfície
12.
Langmuir ; 26(9): 6374-9, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20043698

RESUMO

Phase behavior of CO(2) confined in porous fractal silica with volume fraction of SiO(2) phi(s) = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0 < (rho(CO(2)))(bulk) < 0.977 g/cm(3)) and temperatures (T = 22 degrees C, 35 and 60 degrees C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D < 40 A at all temperatures. At low pressure (P < 55 bar, (rho(CO(2)))(bulk) < 0.2 g/cm(3)) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T = 22 degrees C. This "enrichment factor" gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T = 60 degrees C, i.e., far above the liquid-gas critical temperature of bulk CO(2) (T(C) = 31.1 degrees C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO(2).


Assuntos
Dióxido de Carbono/química , Fractais , Dióxido de Silício/química , Difração de Nêutrons , Porosidade , Pressão , Espalhamento a Baixo Ângulo , Temperatura
13.
Langmuir ; 25(4): 2385-9, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19159193

RESUMO

We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5x10(-7) cm2/min to more than 10(-4) cm2/min, depending on the CO2 pressure and location on the sample.

14.
J Phys Chem B ; 109(20): 10261-9, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16852243

RESUMO

(1)H NMR relaxation and diffusion studies were performed on water-in-CO(2) (W/C) microemulsion systems formed with phosphorus fluorosurfactants of bis[2-(F-hexyl)ethyl] phosphate salts (DiF(8)), having different counterions (Na(+), NH(4)(+), N(CH(3))(4)(+)) by means of high-pressure in situ NMR. Water has a low solubility in CO(2) and is mainly solubilized by the microemulsion droplets formed with surfactants added to CO(2) and water mixtures. There is rapid exchange of water between the bulk CO(2) and the microemulsion droplets; however, NMR relaxation measurements show that the entrapped water has restricted motion, and there is little "free" water in the core. Counterions entrapped by the droplets are mostly associated with the surfactant headgroups: diffusion measurements show that counterions and the surfactant molecules move together with a diffusion coefficient that is associated with the droplet. The outer shell of the microemulsion droplets consists of the surfactant tails with some associated CO(2). For W/C microemulsions formed with the phosphate-based surfactant having the ammonia counterion (A-DiF(8)), the (1)H NMR signal for NH(4)(+) shows a much larger diffusion coefficient than that of the surfactant tails. This apparent paradox is explained on the basis of proton exchange between water and the ammonium ion. The observed dependence of the relaxation time (T(2)) on W(0) (mole ratio of water to surfactant in the droplets) for water and NH(4)(+) can also be explained by this exchange model. The average hydrodynamic radius of A-DiF(8) microemulsion droplets estimated from NMR diffusion measurements (25 degrees C, 206 bar, W(0) = 5) was R(h) = 2.0 nm. Assuming the theoretical ratio of R(g)/R(h) = 0.775 for a solid sphere, where R(g) is the radius of gyration, the equivalent hydrodynamic radius from SANS is R(h) = 1.87 nm. The radii measured by the two techniques are in reasonable agreement, as the two techniques are weighted to measure somewhat different parts of the micelle structure.

15.
Langmuir ; 20(4): 1065-72, 2004 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-15803679

RESUMO

Anionic phosphodiester surfactants, possessing either two fluorinated chains (F/F) or one hydrocarbon chain and one fluorinated chain (H/F), were synthesized and evaluated for solubility and self-assembly in liquid and supercritical carbon dioxide. Several surfactants, of both F/F and H/F types and having varied counterions, were found to be capable of solubilizing water-in-CO2 (W/C), via the formation of microemulsions, expanding upon the family of phosphate fluorosurfactants already found to stabilize W/C microemulsions. Small-angle neutron scatteringwas used to directly characterize the microemulsion particles at varied temperatures, pressures, and water loadings, revealing behavior consistent with previous results on W/C microemulsions.

16.
J Am Chem Soc ; 124(9): 1834-5, 2002 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-11866579

RESUMO

Anionic phosphate fluorosurfactants were shown to self-assemble into water-in-carbon dioxide microemulsions. The surfactants, having either two fluorinated chains or one fluorinated chain and one hydrocarbon chain, facilitated significant water uptake in CO2. Small angle neutron scattering (SANS) measurements of surfactant/water/CO2 solutions confirmed the presence of nanometer-scale aggregates, indicative of microemulsion formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA