Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216508

RESUMO

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Assuntos
Alcenos , Ácidos Graxos , Ácidos Graxos/metabolismo , Alcenos/química , Descarboxilação , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
2.
Nat Commun ; 12(1): 4049, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193873

RESUMO

Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.


Assuntos
Parede Celular/metabolismo , Citrus/microbiologia , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Fatores de Virulência/genética , Xanthomonas/metabolismo , Xilanos/metabolismo , Proteínas de Bactérias/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ativação Transcricional , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Xanthomonas/genética , Xanthomonas/patogenicidade
3.
Nat Commun, v. 12, 4049, jun. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3884

RESUMO

Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32435636

RESUMO

Macaw palm is a highly oil-producing plant, which presents high contents of free fatty acids, being a promising feedstock for biofuel production. The current chemical routes are costly and complex, involving highly harsh industrial conditions. Enzymatic processing is a potential alternative; however, it is hampered by the scarce knowledge on biocatalysts adapted to this acidic feedstock. This work describes a novel lipase isolated from the thermophilic fungus Rasamsonia emersonii (ReLip), which tolerates extreme conditions such as the presence of methanol, high temperatures, and acidic medium. Among the tested feedstocks, the enzyme showed the highest preference for macaw palm oil, producing a hydrolyzate with a final free fatty acid content of 92%. Crystallographic studies revealed a closed conformation of the helical amphipathic lid that typically undergoes conformational changes in a mechanism of interfacial activation. Such conformation of the lid is stabilized by a salt bridge, not observed in other structurally characterized homologs, which is likely involved in the tolerance to organic solvents. Moreover, the lack of conservation of the aromatic cluster IxxWxxxxxF in the lid of ReLip with the natural mutation of the phenylalanine by an alanine might be correlated with the preference of short acyl chains, although preserving catalytic activity on insoluble substrates. In addition, the presence of five acidic amino acids in the lid of ReLip, a rare property reported in other lipases, may have contributed to its ability to tolerate and be effective in acidic environments. Therefore, our work describes a new fungal biocatalyst capable of efficiently hydrolyzing macaw oil, an attractive feedstock for the production of "drop-in" biofuels, with high desirable feature for industrial conditions such as thermal and methanol tolerance, and optimum acidic pH. Moreover, the crystallographic structure was elucidated, providing a structural basis for the enzyme substrate preference and tolerance to organic solvents.

5.
Food Chem ; 241: 403-410, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958547

RESUMO

The popularity of transglutaminase (TG) by the food industry and the variation in functionality of this enzyme from different origins, prompted us to isolate and evaluate a high-yielding TG strain. Through the statistical approaches, Plackett-Burman and response surface methodology, a low cost fermentation media was obtained to produce 6.074±0.019UmL-1 of TG from a novel source; Streptomyces sp. CBMAI 1617 (SB6). Its potential exploitation was compared to commonly used TG, from Streptomyces mobaraensis. Biochemical and FT-IR studies indicated differences between SB6 and commercial TG (Biobond™ TG-M). Additions of TG to wheat protein and flour based doughs revealed that the dough stretching depended on the wheat protein fraction, TG amount and its origin. A higher degree of cross-linking of glutenins and of inclusion of gliadin in the polymers was seen for SB6 as compared to commercial TG. Thus, our results support the potential of SB6 to tailor wheat protein properties within various food applications.


Assuntos
Proteínas de Plantas/metabolismo , Streptomyces , Transglutaminases/metabolismo , Triticum , Farinha , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Braz J Microbiol ; 46(1): 251-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26221114

RESUMO

An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 (5) s (-1) and 4.7 × 10 (6) s (-1) .M (-1) , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg (2+) , Cd (2+) , K (+) and Ca (2+) , and it was drastically inhibited by F (-) . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 µmol phosphate/mL after 2.5 h of treatment.


Assuntos
6-Fitase/isolamento & purificação , 6-Fitase/metabolismo , Aspergillus niger/enzimologia , 6-Fitase/química , Precipitação Química , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/análise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Peptídeo Hidrolases/metabolismo , Ácido Fítico/metabolismo , Multimerização Proteica , Proteólise , Especificidade por Substrato , Temperatura , Ultrafiltração
7.
Braz. j. microbiol ; Braz. j. microbiol;46(1): 251-260, 05/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-748253

RESUMO

An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The KM for sodium phytate hydrolysis was 30.9 mM, while the kcat and kcat/KM were 1.46 ×105 s−1 and 4.7 × 106 s−1.M−1, respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg2+, Cd2+, K+ and Ca2+, and it was drastically inhibited by F−. The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment.


Assuntos
/isolamento & purificação , /metabolismo , Aspergillus niger/enzimologia , /química , Precipitação Química , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Inibidores Enzimáticos/análise , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Multimerização Proteica , Proteólise , Peptídeo Hidrolases/metabolismo , Ácido Fítico/metabolismo , Especificidade por Substrato , Temperatura , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA