Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sleep Med Rev ; 65: 101683, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096986

RESUMO

Narcolepsy type 1 (NT1) is a rare neurological sleep disorder triggered by postnatal loss of the orexin/hypocretin neuropeptides. Overweight/obesity and precocious puberty are highly prevalent comorbidities of NT1, with a close temporal correlation with disease onset, suggesting a common origin. However, the underlying mechanisms remain unknown and merit further investigation. The main question we address in this review is whether the occurrence of precocious puberty in NT1 is due to the lack of orexin/hypocretin or rather to a wider hypothalamic dysfunction in the context of neuroinflammation, which is likely to accompany the disease given its autoimmune origins. Our analysis suggests that the suspected generalized neuroinflammation of the hypothalamus in NT1 would tend to delay puberty rather than hastening it. In contrast, that the brutal loss of orexin/hypocretin would favor an early reactivation of gonadotropin-releasing hormone (GnRH) secretion during the prepubertal period in vulnerable children, leading to early puberty onset. Orexin/hypocretin replacement could thus be envisaged as a potential treatment for precocious puberty in NT1. Additionally, we put forward an alternative hypothesis regarding the concomitant occurrence of sleepiness, weight gain and early puberty in NT1.


Assuntos
Narcolepsia , Neuropeptídeos , Puberdade Precoce , Criança , Hormônio Liberador de Gonadotropina , Humanos , Doenças Neuroinflamatórias , Orexinas , Puberdade Precoce/complicações
2.
Brain ; 145(6): 2018-2030, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35552381

RESUMO

Narcolepsy with cataplexy or narcolepsy type 1 is a disabling chronic sleep disorder resulting from the destruction of orexinergic neurons in the hypothalamus. The tight association of narcolepsy with HLA-DQB1*06:02 strongly suggest an autoimmune origin to this disease. Furthermore, converging epidemiological studies have identified an increased incidence for narcolepsy in Europe following Pandemrix® vaccination against the 2009-2010 pandemic 'influenza' virus strain. The potential immunological link between the Pandemrix® vaccination and narcolepsy remains, however, unknown. Deciphering these mechanisms may reveal pathways potentially at play in most cases of narcolepsy. Here, we developed a mouse model allowing to track and study the T-cell response against 'influenza' virus haemagglutinin, which was selectively expressed in the orexinergic neurons as a new self-antigen. Pandemrix® vaccination in this mouse model resulted in hypothalamic inflammation and selective destruction of orexin-producing neurons. Further investigations on the relative contribution of T-cell subsets in this process revealed that haemagglutinin-specific CD4 T cells were necessary for the development of hypothalamic inflammation, but insufficient for killing orexinergic neurons. Conversely, haemagglutinin-specific CD8 T cells could not initiate inflammation but were the effectors of the destruction of orexinergic neurons. Additional studies revealed pathways potentially involved in the disease process. Notably, the interferon-γ pathway was proven essential, as interferon-γ-deficient CD8 T cells were unable to elicit the loss of orexinergic neurons. Our work demonstrates that an immunopathological process mimicking narcolepsy can be elicited by immune cross-reactivity between a vaccine antigen and a neuronal self-antigen. This process relies on a synergy between autoreactive CD4 and CD8 T cells for disease development. This work furthers our understanding of the mechanisms and pathways potentially involved in the development of a neurological side effect due to a vaccine and, likely, to narcolepsy in general.


Assuntos
Autoimunidade , Vacinas contra Influenza , Narcolepsia , Animais , Autoantígenos , Hemaglutininas , Inflamação/complicações , Vacinas contra Influenza/efeitos adversos , Interferon gama , Camundongos , Narcolepsia/induzido quimicamente , Neurônios , Orexinas , Linfócitos T/imunologia , Vacinação/efeitos adversos
3.
Brain Pathol ; 32(2): e13027, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672414

RESUMO

An increased number of histaminergic neurons, identified by labeling histidine-decarboxylase (HDC) its synthesis enzyme, was unexpectedly found in patients with narcolepsy type 1 (NT1). In quest for enlightenment, we evaluate whether an increase in HDC cell number and expression level would be detected in mouse models of the disease, in order to provide proof of concepts reveling possible mechanisms of compensation for the loss of orexin neurons, and/or of induced expression as a consequence of local neuroinflammation, a state that likely accompanies NT1. To further explore the compensatory hypothesis, we also study the noradrenergic wake-promoting system. Immunohistochemistry for HDC, orexin, and melanin-concentrating hormone (MCH) was used to count neurons. Quantitative-PCR of HDC, orexin, MCH, and tyrosine-hydroxylase was performed to evaluate levels of mRNA expression in the hypothalamus or the dorsal pons. Both quantifications were achieved in genetic and neuroinflammatory models of narcolepsy with major orexin impairment, namely the orexin-deficient (Orex-KO) and orexin-hemagglutinin (Orex-HA) mice respectively. The number of HDC neurons and mRNA expression level were unchanged in Orex-KO mice compared to controls. Similarly, we found no change in tyrosine-hydroxylase mRNA expression in the dorsal pons between groups. Further, despite the presence of protracted local neuroinflammation as witnessed by the presence of reactive microglia, we found no change in the number of neurons nor the expression of HDC in Orex-HA mice compared to controls. Importantly, no correlation was found in all conditions between HDC and orexin. Our findings indicate that, in mice, the expression of histamine and noradrenalin, two wake-promoting systems, are not modulated by orexin level whether the lack of orexin is constitutive or induced at adult age, showing thus no compensation. They also show no recruitment of histamine by local neuroinflammation. Further studies will be needed to further define the role of histamine in the pathophysiology of NT1.


Assuntos
Histamina , Narcolepsia , Animais , Histamina/metabolismo , Histidina Descarboxilase/genética , Humanos , Camundongos , Oxigenases de Função Mista , Narcolepsia/genética , Narcolepsia/metabolismo , Orexinas/metabolismo , RNA Mensageiro
4.
Sleep Med ; 44: 53-60, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29530370

RESUMO

BACKGROUND: Type 1 narcolepsy (NT1) is a central hypersomnia linked to the destruction of hypocretin-producing neurons. A great body of genetic and epidemiological data points to likely autoimmune disease aetiology. Recent reports have characterized peripheral blood T-cell subsets in NT1, whereas data regarding the cerebrospinal fluid (CSF) immune cell composition are lacking. The current study aimed to characterize the T-cell and natural killer (NK) cell subsets in NT1 patients with long disease course. METHODS: Immune cell subsets from CSF and peripheral blood mononuclear cell (PBMC) samples were analysed by flow cytometry in two age-balanced and sex-balanced groups of 14 NT1 patients versus 14 healthy controls. The frequency of CSF cell groups was compared with PBMCs. Non-parametric tests were used for statistical analyses. RESULTS: The NT1 patients did not show significant differences of CSF immune cell subsets compared to controls, despite a trend towards higher CD4+ terminally differentiated effector memory T cells. T cells preferentially displayed a memory phenotype in the CSF compared to PBMCs. Furthermore, a reduced frequency of CD4+ terminally differentiated effector memory T cells and an increased frequency of NK CD56bright cells was observed in PBMCs from patients compared to controls. Finally, the ratio between CSF and peripheral CD4+ terminally differentiated effector memory T cells was two-fold increased in NT1 patients versus controls. CONCLUSIONS: Significant differences in PBMCs and in CSF/PBMC ratios of immune cell profile were found in NT1 patients compared to healthy controls. These differences might have arisen from the different HLA status, or be primary or secondary to hypocretin deficiency. Further functional studies in patients close to disease onset are required to understand NT1 pathophysiology.


Assuntos
Citometria de Fluxo/métodos , Narcolepsia/líquido cefalorraquidiano , Narcolepsia/imunologia , Subpopulações de Linfócitos T/citologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Células Matadoras Naturais/citologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA