Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(3): 101449, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508141

RESUMO

Tissue regeneration following an injury requires dynamic cell-state transitions that allow for establishing the cell identities required for the restoration of tissue homeostasis and function. Here, we present a biochemical intervention that induces an intermediate cell state mirroring a transition identified during normal differentiation of myoblasts and other multipotent and pluripotent cells to mature cells. When applied in somatic differentiated cells, the intervention, composed of one-carbon metabolites, reduces some dedifferentiation markers without losing the lineage identity, thus inducing limited reprogramming into a more flexible cell state. Moreover, the intervention enabled accelerated repair after muscle injury in young and aged mice. Overall, our study uncovers a conserved biochemical transitional phase that enhances cellular plasticity in vivo and hints at potential and scalable biochemical interventions of use in regenerative medicine and rejuvenation interventions that may be more tractable than genetic ones.


Assuntos
Músculos , Mioblastos , Camundongos , Animais , Diferenciação Celular , Mioblastos/metabolismo
2.
Curr Opin Genet Dev ; 83: 102127, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839315

RESUMO

Reduced muscle strength and mass is one of the hallmarks of physiological aging in humans and can result in severe impairment of the quality of life. In part this is caused by a functional loss of the highly specialized muscle stem cells (MuSCs), which in healthy conditions provide maintenance, growth, and regeneration. Recent progress in understanding of the stem cell niche and results from single cell technologies reveal exciting insights at unprecedented detail into MuSCs and muscle biology during aging. Here, we review this field and discuss the implications of current findings with a focus on cellular reprogramming approaches as a novel therapeutic avenue for age-related muscle decline.


Assuntos
Envelhecimento , Qualidade de Vida , Humanos , Envelhecimento/genética , Músculos , Reprogramação Celular/genética , Senescência Celular/genética , Músculo Esquelético/fisiologia
3.
Nat Cell Biol ; 25(8): 1079-1080, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37550514
4.
Cell Rep ; 39(4): 110730, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476977

RESUMO

Mammals have limited regenerative capacity, whereas some vertebrates, like fish and salamanders, are able to regenerate their organs efficiently. The regeneration in these species depends on cell dedifferentiation followed by proliferation. We generate a mouse model that enables the inducible expression of the four Yamanaka factors (Oct-3/4, Sox2, Klf4, and c-Myc, or 4F) specifically in hepatocytes. Transient in vivo 4F expression induces partial reprogramming of adult hepatocytes to a progenitor state and concomitantly increases cell proliferation. This is indicated by reduced expression of differentiated hepatic-lineage markers, an increase in markers of proliferation and chromatin modifiers, global changes in DNA accessibility, and an acquisition of liver stem and progenitor cell markers. Functionally, short-term expression of 4F enhances liver regenerative capacity through topoisomerase2-mediated partial reprogramming. Our results reveal that liver-specific 4F expression in vivo induces cellular plasticity and counteracts liver failure, suggesting that partial reprogramming may represent an avenue for enhancing tissue regeneration.


Assuntos
Reprogramação Celular , Fígado , Animais , Desdiferenciação Celular , Hepatócitos/metabolismo , Fígado/metabolismo , Regeneração Hepática , Mamíferos , Camundongos
5.
Cell Stem Cell ; 28(1): 5-7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417872

RESUMO

The regeneration potential of axons projecting from retinal ganglion cells (RGCs) is lost shortly after birth. In Nature, Lu et al. (2020) demonstrate that epigenetic reprogramming of RGCs by overexpression of Oct4, Sox2, and Klf4 leads to axon regeneration and restoration of vision in a glaucoma model and aged mice.


Assuntos
Axônios , Regeneração Nervosa , Animais , Epigênese Genética , Fator 4 Semelhante a Kruppel , Camundongos , Células Ganglionares da Retina , Visão Ocular
6.
Trends Mol Med ; 27(3): 203-206, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33487569

RESUMO

Genome editing holds great promise for treating a range of human genetic diseases. While emerging clustered regularly interspaced short-palindromic repeats (CRISPR) technologies allow editing of the nuclear genome, it is still not possible to precisely manipulate mitochondrial DNA (mtDNA). Here, we summarize past developments and recent advances in nuclear and mitochondrial genome editing.


Assuntos
Edição de Genes , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Edição de Genes/tendências , Terapia Genética/métodos , Terapia Genética/tendências , Genoma , Genoma Mitocondrial , Humanos , Pesquisa Translacional Biomédica
7.
Nat Metab ; 2(4): 293-302, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694606

RESUMO

Organismal ageing results from interlinked molecular changes in multiple organs over time. The study of ageing at the molecular level is complicated by varying decay characteristics and kinetics-both between and within organs-driven by intrinsic and extracellular factors. Emerging single-cell omics methods allow for molecular and spatial profiling of cells, and probing of regulatory states and cell-fate determination, thus providing promising tools for unravelling the heterogeneous process of ageing and making it amenable to intervention. These new strategies are enabled by advances in genomic, epigenomic and transcriptomic technologies. Combined with methods for proteome and metabolome analysis, single-cell techniques provide multidimensional, integrated data with unprecedented detail and throughput. Here, we provide an overview of the current state, and perspectives on the future, of this emerging field. We discuss how single-cell approaches can advance understanding of mechanisms underlying organismal ageing and aid in the development of interventions for ageing and ageing-associated diseases.


Assuntos
Envelhecimento/fisiologia , Epigenômica/métodos , Genômica/métodos , Metabolômica/métodos , Proteômica/métodos , Análise de Célula Única/métodos , Transcriptoma , Envelhecimento/genética , Humanos
9.
Cell ; 178(1): 242-260.e29, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31155234

RESUMO

Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.


Assuntos
Miocárdio/metabolismo , Biossíntese de Proteínas , Adolescente , Adulto , Idoso , Animais , Códon/genética , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ribossomos/genética , Ribossomos/metabolismo , Adulto Jovem
10.
Science ; 357(6357)2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28798046

RESUMO

Hundreds of circular RNAs (circRNAs) are highly abundant in the mammalian brain, often with conserved expression. Here we show that the circRNA Cdr1as is massively bound by the microRNAs (miRNAs) miR-7 and miR-671 in human and mouse brains. When the Cdr1as locus was removed from the mouse genome, knockout animals displayed impaired sensorimotor gating-a deficit in the ability to filter out unnecessary information-which is associated with neuropsychiatric disorders. Electrophysiological recordings revealed dysfunctional synaptic transmission. Expression of miR-7 and miR-671 was specifically and posttranscriptionally misregulated in all brain regions analyzed. Expression of immediate early genes such as Fos, a direct miR-7 target, was enhanced in Cdr1as-deficient brains, providing a possible molecular link to the behavioral phenotype. Our data indicate an in vivo loss-of-function circRNA phenotype and suggest that interactions between Cdr1as and miRNAs are important for normal brain function.


Assuntos
Encéfalo/fisiologia , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/metabolismo , RNA/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Loci Gênicos , Humanos , Camundongos , Camundongos Knockout , Estabilidade de RNA , RNA Circular , RNA Longo não Codificante/genética , Regulação para Cima
11.
J Mol Med (Berl) ; 95(11): 1179-1189, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28842720

RESUMO

Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients' samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease. KEY MESSAGES: circRNA resource catalog of 20 clinically relevant tissues. circRNA expression is highly tissue-specific. circRNA transcripts are often more abundant than their linear host RNAs. circRNAs can be differentially expressed in disease-associated genes.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , RNA , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células-Tronco Mesenquimais , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , RNA Circular , Análise de Sequência de RNA , Adulto Jovem
12.
PLoS One ; 10(10): e0141214, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26485708

RESUMO

Covalently closed circular RNA molecules (circRNAs) have recently emerged as a class of RNA isoforms with widespread and tissue specific expression across animals, oftentimes independent of the corresponding linear mRNAs. circRNAs are remarkably stable and sometimes highly expressed molecules. Here, we sequenced RNA in human peripheral whole blood to determine the potential of circRNAs as biomarkers in an easily accessible body fluid. We report the reproducible detection of thousands of circRNAs. Importantly, we observed that hundreds of circRNAs are much higher expressed than corresponding linear mRNAs. Thus, circRNA expression in human blood reveals and quantifies the activity of hundreds of coding genes not accessible by classical mRNA specific assays. Our findings suggest that circRNAs could be used as biomarker molecules in standard clinical blood samples.


Assuntos
Biomarcadores/sangue , RNA/sangue , RNA/genética , Encéfalo/metabolismo , Humanos , Fígado/metabolismo , RNA/isolamento & purificação , RNA Circular
13.
Cell Rep ; 10(2): 170-7, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25558066

RESUMO

Circular RNAs (circRNAs) are a large class of animal RNAs. To investigate possible circRNA functions, it is important to understand circRNA biogenesis. Besides human ALU repeats, sequence features that promote exon circularization are largely unknown. We experimentally identified circRNAs in C. elegans. Reverse complementary sequences between introns bracketing circRNAs were significantly enriched in comparison to linear controls. By scoring the presence of reverse complementary sequences in human introns, we predicted and experimentally validated circRNAs. We show that introns bracketing circRNAs are highly enriched in RNA editing or hyperediting events. Knockdown of the double-strand RNA-editing enzyme ADAR1 significantly and specifically upregulated circRNA expression. Together, our data support a model of animal circRNA biogenesis in which competing RNA-RNA interactions of introns form larger structures that promote circularization of embedded exons, whereas ADAR1 antagonizes circRNA expression by melting stems within these interactions.


Assuntos
RNA/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células HEK293 , Humanos , Íntrons , Modelos Genéticos , RNA/química , Edição de RNA , Interferência de RNA , RNA Circular , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima
14.
Mol Cell ; 56(1): 55-66, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25242144

RESUMO

Circular RNAs (circRNAs) are widely expressed noncoding RNAs. However, their biogenesis and possible functions are poorly understood. Here, by studying circRNAs that we identified in neuronal tissues, we provide evidence that animal circRNAs are generated cotranscriptionally and that their production rate is mainly determined by intronic sequences. We demonstrate that circularization and splicing compete against each other. These mechanisms are tissue specific and conserved in animals. Interestingly, we observed that the second exon of the splicing factor muscleblind (MBL/MBNL1) is circularized in flies and humans. This circRNA (circMbl) and its flanking introns contain conserved muscleblind binding sites, which are strongly and specifically bound by MBL. Modulation of MBL levels strongly affects circMbl biosynthesis, and this effect is dependent on the MBL binding sites. Together, our data suggest that circRNAs can function in gene regulation by competing with linear splicing. Furthermore, we identified muscleblind as a factor involved in circRNA biogenesis.


Assuntos
Drosophila/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA/biossíntese , Animais , Células Cultivadas , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Células HEK293 , Humanos , Modelos Genéticos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , RNA Circular , Transcrição Gênica
15.
Nature ; 495(7441): 333-8, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23446348

RESUMO

Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.


Assuntos
Regulação da Expressão Gênica , RNA/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Sítios de Ligação , Encéfalo/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular , Sequência Conservada , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA/genética , RNA Circular , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
EMBO J ; 31(4): 972-85, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22157815

RESUMO

The activating E2F-transcription factors are best known for their dependence on the Retinoblastoma protein and their role in cellular proliferation. E2F3 is uniquely amplified in specific human tumours where its expression is inversely correlated with the survival of patients. Here, E2F3B interaction partners were identified by mass spectrometric analysis. We show that the SNF2-like helicase HELLS interacts with E2F3A in vivo and cooperates with its oncogenic functions. Depletion of HELLS severely perturbs the induction of E2F-target genes, hinders cell-cycle re-entry and growth. Using chromatin immmunoprecipitation coupled to sequencing, we identified genome-wide targets of HELLS and E2F3A/B. HELLS binds promoters of active genes, including the trithorax-related MLL1, and co-regulates E2F3-dependent genes. Strikingly, just as E2F3, HELLS is overexpressed in human tumours including prostate cancer, indicating that either factor may contribute to the malignant progression of tumours. Our work reveals that HELLS is important for E2F3 in tumour cell proliferation.


Assuntos
Transformação Celular Neoplásica , DNA Helicases/fisiologia , Fator de Transcrição E2F3/fisiologia , Transcrição Gênica/fisiologia , Ciclo Celular , Imunoprecipitação da Cromatina , DNA Helicases/metabolismo , Humanos , Masculino , Neoplasias da Próstata/patologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA