Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1433309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39049826

RESUMO

Introduction: Neuroinflammation is a hallmark of multiple neurodegenerative diseases, shared by all pathological processes which primarily impact on neurons, including Central Nervous System (CNS) injuries. In reactive CNS, activated glia releases extracellular vesicles (EVs), nanosized membranous particles known to play a key role in intercellular communication. EVs mediate neuroinflammatory responses and might exacerbate tissue deterioration, ultimately influencing neurodegenerative disease progression. Methods: We treated spinal cord organotypic slices with LPS, a ligand extensively used to induce sEVs release, to mimic mild inflammatory conditions. We combine atomic force microscopy (AFM), nanoparticle tracking (NTA) and western blot (WB) analysis to validate the isolation and characterisation of sEVs. We further use immunofluorescence and confocal microscopy with live calcium imaging by GCaMP6f reporter to compare glial reactivity to treatments with sEVs when isolated from resting and LPS treated organ slices. Results: In our study, we focus on CNS released small EVs (sEVs) and their impact on the biology of inflammatory environment. We address sEVs local signalling within the CNS tissue, in particular their involvement in inflammation spreading mechanism(s). sEVs are harvested from mouse organotypic spinal cord cultures, an in vitro model which features 3D complexity and retains spinal cord resident cells. By confocal microscopy and live calcium imaging we monitor glial responses in naïve spinal slices when exposed to sEVs isolated from resting and LPS treated organ slices. Discussion: We show that sEVs, only when released during LPS neuroinflammation, recruit naïve astrocytes in the neuroinflammation cycle and we propose that such recruitment be mediated by EVs hemichannel (HC) permeability.

2.
Mol Brain ; 17(1): 4, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263055

RESUMO

The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.


Assuntos
Esclerose Múltipla , Humanos , Citocinas , Doenças Neuroinflamatórias , Encéfalo , Sistema Nervoso Central
3.
Mol Brain ; 14(1): 159, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696792

RESUMO

Neuroinflammation is an escalation factor shared by a vast range of central nervous system (CNS) pathologies, from neurodegenerative diseases to neuropsychiatric disorders. CNS immune status emerges by the integration of the responses of resident and not resident cells, leading to alterations in neural circuits functions. To explore spinal cord astrocyte reactivity to inflammatory threats we focused our study on the effects of local inflammation in a controlled micro-environment, the organotypic spinal slices, developed from the spinal cord of mouse embryos. These organ cultures represent a complex in vitro model where sensory-motor cytoarchitecture, synaptic properties and spinal cord resident cells, are retained in a 3D fashion and we recently exploit these cultures to model two diverse immune conditions in the CNS, involving different inflammatory networks and products. Here, we specifically focus on the tuning of calcium signaling in astrocytes by these diverse types of inflammation and we investigate the mechanisms which modulate intracellular calcium release and its spreading among astrocytes in the inflamed environment. Organotypic spinal cord slices are cultured for two or three weeks in vitro (WIV) and exposed for 6 h to a cocktail of cytokines (CKs), composed by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1 ß) and granulocyte macrophage-colony stimulating factor (GM-CSF), or to lipopolysaccharide (LPS). By live calcium imaging of the ventral horn, we document an increase in active astrocytes and in the occurrence of spontaneous calcium oscillations displayed by these cells when exposed to each inflammatory threat. Through several pharmacological treatments, we demonstrate that intracellular calcium sources and the activation of connexin 43 (Cx43) hemichannels have a pivotal role in increasing calcium intercellular communication in both CKs and LPS conditions, while the Cx43 gap junction communication is apparently reduced by the inflammatory treatments.


Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Conexina 43/fisiologia , Doenças Neuroinflamatórias/fisiopatologia , Medula Espinal/fisiopatologia , Animais , Células do Corno Anterior/fisiologia , Citocinas/toxicidade , Vetores Genéticos/farmacologia , Técnicas In Vitro , Microscopia Intravital , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Doenças Neuroinflamatórias/induzido quimicamente , Medula Espinal/embriologia
5.
Pharmacol Res ; 103: 180-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26640075

RESUMO

Increasing evidence indicates that inflammatory responses could play a critical role in the pathogenesis of motor neuron injury in amyotrophic lateral sclerosis (ALS). Recent findings have underlined the role of Toll-like receptors (TLRs) and the involvement of both the innate and adaptive immune responses in ALS pathogenesis. In particular, abnormal TLR4 signaling in pro-inflammatory microglia cells has been related to motoneuron degeneration leading to ALS. In this study the effect of small molecule TLR4 antagonists on in vitro ALS models has been investigated. Two different types of synthetic glycolipids and the phenol fraction extracted from commercial extra-virgin olive oil (EVOO) were selected since they efficiently inhibit TLR4 stimulus in HEK cells by interacting with the TLR4·MD-2 complex and CD14 co-receptor. Here, TLR4 antagonists efficiently protected motoneurons from LPS-induced lethality in spinal cord cultures, and inhibited the interleukine-1ß production by LPS-stimulated microglia. In motoneurons/glia cocultures obtained from wild type or SOD1 G93A mice, motoneuron death induced by SOD1mut glia was counteracted by TLR4 antagonists. The release of nitric oxide by LPS treatment or SOD1mut glia was also inhibited by EVOO, suggesting that the action of this natural extract could be mainly related to the modulation of this inflammatory mediator.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/efeitos dos fármacos , Azeite de Oliva/farmacologia , Fenóis/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Morte Celular/efeitos dos fármacos , Técnicas de Cocultura , Modelos Animais de Doenças , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Neurônios Motores/metabolismo , Óxido Nítrico/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA