Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 39: 107524, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34815988

RESUMO

In this article, we present a skull database containing 500 healthy skulls segmented from high-resolution head computed-tomography (CT) scans and 29 defective skulls segmented from craniotomy head CTs. Each healthy skull contains the complete anatomical structures of human skulls, including the cranial bones, facial bones and other subtle structures. For each craniotomy skull, a part of the cranial bone is missing, leaving a defect on the skull. The defects have various sizes, shapes and positions, depending on the specific pathological conditions of each patient. Along with each craniotomy skull, a cranial implant, which is designed manually by an expert and can fit with the defect, is provided. Considering the large volume of the healthy skull collection, the dataset can be used to study the geometry/shape variabilities of human skulls and create a robust statistical model of the shape of human skulls, which can be used for various tasks such as cranial implant design. The craniotomy collection can serve as an evaluation set for automatic cranial implant design algorithms.

2.
Expert Rev Med Devices ; 18(10): 985-994, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34404280

RESUMO

INTRODUCTION: Researchers and engineers have found their importance in healthcare industry including recent updates in patient-specific implant (PSI) design. CAD/CAM technology plays an important role in the design and development of Artificial Intelligence (AI) based implants.The across the globe have their interest focused on the design and manufacturing of AI-based implants in everyday professional use can decrease the cost, improve patient's health and increase efficiency, and thus many implant designers and manufacturers practice. AREAS COVERED: The focus of this study has been to manufacture smart devices that can make contact with the world as normal people do, understand their language, and learn to improve from real-life examples. Machine learning can be guided using a heavy amount of data sets and algorithms that can improve its ability to learn to perform the task. In this review, artificial intelligence (AI), deep learning, and machine-learning techniques are studied in the design of biomedical implants. EXPERT OPINION: The main purpose of this article was to highlight important AI techniques to design PSIs. These are the automatic techniques to help designers to design patient-specific implants using AI algorithms such as deep learning, machine learning, and some other automatic methods.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Algoritmos , Humanos
3.
Expert Rev Med Devices ; 17(4): 345-356, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32105159

RESUMO

Introduction: Various prefabricated maxillofacial implants are used in the clinical routine for the surgical treatment of patients. In addition to these prefabricated implants, customized CAD/CAM implants become increasingly important for a more precise replacement of damaged anatomical structures. This paper reviews the design and manufacturing of patient-specific implants for the maxillofacial area.Areas covered: The contribution of this publication is to give a state-of-the-art overview in the usage of customized facial implants. Moreover, it provides future perspectives, including 3D printing technologies, for the manufacturing of patient-individual facial implants that are based on patient's data acquisitions, like Computed Tomography (CT) or Magnetic Resonance Imaging (MRI).Expert opinion: The main target of this review is to present various designing software and 3D manufacturing technologies that have been applied to fabricate facial implants. In doing so, different CAD designing software's are discussed, which are based on various methods and have been implemented and evaluated by researchers. Finally, recent 3D printing technologies that have been applied to manufacture patient-individual implants will be introduced and discussed.


Assuntos
Desenho Assistido por Computador , Face/cirurgia , Maxila/cirurgia , Próteses e Implantes , Desenho de Prótese , Humanos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA