Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
PLoS One ; 12(12): e0189043, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29228015

RESUMO

Iron accumulation, oxidative stress and calcium signaling dysregulation are common pathognomonic signs of several neurodegenerative diseases, including Parkinson´s and Alzheimer's diseases, Friedreich ataxia and Huntington's disease. Given their therapeutic potential, the identification of multifunctional compounds that suppress these damaging features is highly desirable. Here, we report the synthesis and characterization of N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide, named CT51, which exhibited potent free radical neutralizing activity both in vitro and in cells. CT51 bound Fe2+ with high selectivity and Fe3+ with somewhat lower affinity. Cyclic voltammetric analysis revealed irreversible binding of Fe3+ to CT51, an important finding since stopping Fe2+/Fe3+ cycling in cells should prevent hydroxyl radical production resulting from the Fenton-Haber-Weiss cycle. When added to human neuroblastoma cells, CT51 freely permeated the cell membrane and distributed to both mitochondria and cytoplasm. Intracellularly, CT51 bound iron reversibly and protected against lipid peroxidation. Treatment of primary hippocampal neurons with CT51 reduced the sustained calcium release induced by an agonist of ryanodine receptor-calcium channels. These protective properties of CT51 on cellular function highlight its possible therapeutic use in diseases with significant oxidative, iron and calcium dysregulation.


Assuntos
Antioxidantes/metabolismo , Ferro/metabolismo , Neurônios/fisiologia , Sinalização do Cálcio , Linhagem Celular Tumoral , Humanos , Neurônios/metabolismo , Estresse Oxidativo
2.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2202-2209, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28502703

RESUMO

Mitochondrial dysfunction and oxidative damage, often accompanied by elevated intracellular iron levels, are pathophysiological features in a number of neurodegenerative processes. The question arises as to whether iron dyshomeostasis is a consequence of mitochondrial dysfunction. Here we have evaluated the role of Iron Regulatory Protein 1 (IRP1) in the death of SH-SY5Y dopaminergic neuroblastoma cells subjected to mitochondria complex I inhibition. We found that complex I inhibition was associated with increased levels of transferrin receptor 1 (TfR1) and iron uptake transporter divalent metal transporter 1 (DMT1), and decreased levels of iron efflux transporter Ferroportin 1 (FPN1), together with increased 55Fe uptake activity and an increased cytoplasmic labile iron pool. Complex I inhibition also resulted in increased oxidative modifications and increased cysteine oxidation that were inhibited by the iron chelators desferoxamine, M30 and Q1. Silencing of IRP1 abolished the rotenone-induced increase in 55Fe uptake activity and it protected cells from death induced by complex I inhibition. IRP1 knockdown cells presented higher ferritin levels, a lower iron labile pool, increased resistance to cysteine oxidation and decreased oxidative modifications. These results support the concept that IRP1 is an oxidative stress biosensor that mediates iron accumulation and cell death when deregulated by mitochondrial dysfunction. IRP1 activation, secondary to mitochondrial dysfunction, may underlie the events leading to iron dyshomeostasis and neuronal death observed in neurodegenerative disorders with an iron accumulation component.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Proteína 1 Reguladora do Ferro/metabolismo , Mitocôndrias/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Morte Celular , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Proteína 1 Reguladora do Ferro/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
3.
Free Radic Biol Med ; 108: 236-246, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28365360

RESUMO

Compelling evidence suggests that mitochondrial dysfunction leading to reactive oxygen species (ROS) production and protein oxidation could represent a critical event in the pathogenesis of Parkinson's disease (PD). Pioneering studies have shown that the mitochondrial matrix contains the Lon protease, which degrades oxidized, dysfunctional, and misfolded protein. Using the PD animal model of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication in mice, we showed that Lon protease expression increased in the ventral mesencephalon of intoxicated animals, concomitantly with the appearance of oxidized proteins and dopaminergic cell loss. In addition, we report that Lon is inactivated by ROS. Moreover, proteomic experiments provide evidence of carbonylation in α-ketoglutarate dehydrogenase (KGDH), aconitase or subunits of respiratory chain complexes. Lon protease inactivation upon MPTP treatment in mice raises the possibility that Lon protease dysfunction is an early event in the pathogenesis of PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/patologia , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Protease La/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Aconitato Hidratase/metabolismo , Animais , Morte Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Complexo Cetoglutarato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Resposta a Proteínas não Dobradas
5.
PLoS One ; 10(12): e0144848, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658949

RESUMO

Neuronal death in Parkinson's disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.


Assuntos
Antioxidantes/farmacologia , Quelantes de Ferro/farmacologia , Intoxicação por MPTP/tratamento farmacológico , Fibras Nervosas/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/antagonistas & inibidores , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 2,2'-Dipiridil/farmacologia , Animais , Deferiprona , Desferroxamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/agonistas , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/biossíntese , Hidroxiquinolinas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Neuritos/metabolismo , Neuritos/patologia , Cultura Primária de Células , Piridonas/farmacologia , Ratos , Ratos Sprague-Dawley , Sinaptofisina/agonistas , Sinaptofisina/biossíntese , Tirosina 3-Mono-Oxigenase/biossíntese
6.
Biochem Biophys Res Commun ; 463(4): 787-92, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26051278

RESUMO

Abundant evidence indicates that iron accumulation, oxidative damage and mitochondrial dysfunction are common features of Huntington's disease, Parkinson's disease, Friedreich's ataxia and a group of disorders known as Neurodegeneration with Brain Iron Accumulation. In this study, we evaluated the effectiveness of two novel 8-OH-quinoline-based iron chelators, Q1 and Q4, to decrease mitochondrial iron accumulation and oxidative damage in cellular and animal models of PD. We found that at sub-micromolar concentrations, Q1 selectively decreased the mitochondrial iron pool and was extremely effective in protecting against rotenone-induced oxidative damage and death. Q4, in turn, preferentially chelated the cytoplasmic iron pool and presented a decreased capacity to protect against rotenone-induced oxidative damage and death. Oral administration of Q1 to mice protected substantia nigra pars compacta neurons against oxidative damage and MPTP-induced death. Taken together, our results support the concept that oral administration of Q1 is a promising therapeutic strategy for the treatment of NBIA.


Assuntos
Morte Celular/efeitos dos fármacos , Hidroxiquinolinas/farmacologia , Quelantes de Ferro/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/citologia , Rotenona/farmacologia
7.
Mitochondrion ; 21: 92-105, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25667951

RESUMO

Synthesis of the iron-containing prosthetic groups-heme and iron-sulfur clusters-occurs in mitochondria. The mitochondrion is also an important producer of reactive oxygen species (ROS), which are derived from electrons leaking from the electron transport chain. The coexistence of both ROS and iron in the secluded space of the mitochondrion makes this organelle particularly prone to oxidative damage. Here, we review the elements that configure mitochondrial iron homeostasis and discuss the principles of iron-mediated ROS generation in mitochondria. We also review the evidence for mitochondrial dysfunction and iron accumulation in Alzheimer's disease, Huntington Disease, Friedreich's ataxia, and in particular Parkinson's disease. We postulate that a positive feedback loop of mitochondrial dysfunction, iron accumulation, and ROS production accounts for the process of cell death in various neurodegenerative diseases in which these features are present.


Assuntos
Homeostase , Ferro/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Animais , Morte Celular , Heme/metabolismo , Humanos , Ferro/toxicidade , Proteínas Ferro-Enxofre/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade
8.
Front Pharmacol ; 5: 38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24653700

RESUMO

A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer's disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich's ataxia and Parkinson's disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron-sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS) derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson's disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.

9.
J Neurochem ; 126(4): 541-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23506423

RESUMO

Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that include Alzheimer's disease and Parkinson's disease. The study of the putative association between inflammation and iron accumulation in central nervous system cells is relevant to understand the contribution of these processes to the progression of neuronal death. In this study, we analyzed the effects of the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) and of lipopolysaccharide on total cell iron content and on the expression and abundance of the iron transporters divalent metal transporter 1 (DMT1) and Ferroportin 1 (FPN1) in neurons, astrocytes and microglia obtained from rat brain. Considering previous reports indicating that inflammatory stimuli induce the systemic synthesis of the master iron regulator hepcidin, we identified brain cells that produce hepcidin in response to inflammatory stimuli, as well as hepcidin-target cells. We found that inflammatory stimuli increased the expression of DMT1 in neurons, astrocytes, and microglia. Inflammatory stimuli also induced the expression of hepcidin in astrocytes and microglia, but not in neurons. Incubation with hepcidin decreased the expression of FPN1 in the three cell types. The net result of these changes was increased iron accumulation in neurons and microglia but not in astrocytes. The data presented here establish for the first time a causal association between inflammation and iron accumulation in brain cells, probably promoted by changes in DMT1 and FPN1 expression and mediated in part by hepcidin. This connection may potentially contribute to the progression of neurodegenerative diseases by enhancing iron-induced oxidative damage.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/genética , Encefalite/imunologia , Encefalite/metabolismo , Ferro/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Astrócitos/citologia , Astrócitos/imunologia , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/imunologia , Proteínas de Transporte de Cátions/imunologia , Proteínas de Transporte de Cátions/metabolismo , Encefalite/genética , Feminino , Feto/citologia , Hepcidinas , Interleucina-6/imunologia , Interleucina-6/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Microglia/citologia , Microglia/imunologia , Microglia/metabolismo , Degeneração Neural/genética , Degeneração Neural/imunologia , Degeneração Neural/metabolismo , Neurônios/citologia , Neurônios/imunologia , Neurônios/metabolismo , Cultura Primária de Células , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/farmacologia
10.
Biochem Biophys Res Commun ; 409(2): 241-6, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21570952

RESUMO

Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Proteína 1 Reguladora do Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/enzimologia , Aconitato Hidratase/metabolismo , Linhagem Celular Tumoral , Citosol/enzimologia , Humanos , Rotenona/farmacologia
11.
Am J Physiol Gastrointest Liver Physiol ; 294(1): G192-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17962361

RESUMO

Hepcidin (Hepc) is considered a key mediator in iron trafficking. Although the mechanism of Hepc action in macrophages is fairly well established, much less is known about its action in intestinal cells, one of the main targets of Hepc. The current study investigated the effects of physiologically generated Hepc on iron transport in Caco-2 cell monolayers and rat duodenal segments compared with the effects on the J774 macrophage cell line. Addition of Hepc to Caco-2 cells or rat duodenal segments strongly inhibited apical (55)Fe uptake without apparent effects on the transfer of (55)Fe from the cells to the basolateral medium. Concurrently, the levels of divalent metal transporter 1 (DMT1) mRNA and protein in Caco-2 cells decreased while the mRNA and protein levels of the iron export transporter ferroportin did not change. Plasma membrane localization of ferroportin was studied by selective biotinylation of apical and basolateral membrane domains; Hepc induced rapid internalization of ferroportin in J774 cells but not in Caco-2 cells These results indicate that the effect of Hepc is cell dependent: in macrophages it inhibits iron export by inducing ferroportin degradation, whereas in enterocytes it inhibits apical iron uptake by inhibiting DMT1 transcription. Our results highlight the crucial role of Hepc in the control of intestinal iron absorption.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Duodeno/metabolismo , Enterócitos/metabolismo , Absorção Intestinal , Ferro/metabolismo , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Células CACO-2 , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Meios de Cultivo Condicionados/metabolismo , Hepcidinas , Humanos , Radioisótopos de Ferro , Neoplasias Hepáticas/genética , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo , Transcrição Gênica , Transfecção
12.
Biol Res ; 39(1): 191-3, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16629180

RESUMO

Hepcidin (Hepc) is a 25 amino acid cationic peptide with broad antibacterial and antifungal actions. A likely role for Hepc in iron metabolism was suggested by the observation that mice having disruption of the gene encoding the transcription factor USF2 failed to produce Hepc mRNA and developed spontaneous visceral iron overload. Lately, Hepc has been considered the "stores regulator," a putative factor that signals the iron content of the body to intestinal cells. In this work, we characterized the effect of Hepc produced by hepatoma cells on iron absorption by intestinal cells. To that end, human Hepc cDNA was cloned and overexpressed in HepG2 cells and conditioned media from Hepc-overexpressing cells was used to study the effects of Hepe on intestinal Caco-2 cells grown in bicameral inserts. The results indicate that Hepc released by HepG2 inhibited apical iron uptake by Caco-2 cells, probably by inhibiting the expression of the apical transporter DMT1. These results support a model in which Hepc released by the liver negatively regulates the expression of transporter DMT1 in the enterocyte.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Enterócitos/metabolismo , Células Epiteliais/metabolismo , Intestinos/citologia , Ferro/metabolismo , Transporte Biológico , Células CACO-2 , Proteínas de Transporte de Cátions/genética , DNA Complementar , Hepcidinas , Humanos , Mucosa Intestinal/metabolismo , Sobrecarga de Ferro/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo
13.
Biol. Res ; 39(1): 191-193, 2006. ilus
Artigo em Inglês | LILACS | ID: lil-430713

RESUMO

Hepcidin (Hepc) is a 25 amino acid cationic peptide with broad antibacterial and antifungal actions. A likely role for Hepc in iron metabolism was suggested by the observation that mice having disruption of the gene encoding the transcription factor USF2 failed to produce Hepc mRNA and developed spontaneous visceral iron overload. Lately, Hepc has been considered the stores regulator, a putative factor that signals the iron content of the body to intestinal cells. In this work, we characterized the effect of Hepc produced by hepatoma cells on iron absorption by intestinal cells. To that end, human Hepc cDNA was cloned and overexpressed in HepG2 cells and conditioned media from Hepc-overexpressing cells was used to study the effects of Hepc on intestinal Caco-2 cells grown in bicameral inserts. The results indicate that Hepc released by HepG2 inhibited apical iron uptake by Caco-2 cells, probably by inhibiting the expression of the apical transporter DMT1. These results support a model in which Hepc released by the liver negatively regulates the expression of transporter DMT1 in the enterocyte.


Assuntos
Humanos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Enterócitos/metabolismo , Células Epiteliais/metabolismo , Intestinos/citologia , Ferro/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , DNA Complementar , Intestinos/metabolismo , Sobrecarga de Ferro/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA