Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 36: 411-440, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021826

RESUMO

Understanding human embryology has historically relied on comparative approaches using mammalian model organisms. With the advent of low-input methods to investigate genetic and epigenetic mechanisms and efficient techniques to assess gene function, we can now study the human embryo directly. These advances have transformed the investigation of early embryogenesis in nonrodent species, thereby providing a broader understanding of conserved and divergent mechanisms. Here, we present an overview of the major events in human preimplantation development and place them in the context of mammalian evolution by comparing these events in other eutherian and metatherian species. We describe the advances of studies on postimplantation development and discuss stem cell models that mimic postimplantation embryos. A comparative perspective highlights the importance of analyzing different organisms with molecular characterization and functional studies to reveal the principles of early development. This growing field has a fundamental impact in regenerative medicine and raises important ethical considerations.


Assuntos
Desenvolvimento Embrionário , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Modelos Biológicos , Filogenia , Zigoto/metabolismo
2.
Biol Open ; 8(11)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791948

RESUMO

Pluripotency is regulated by a network of transcription factors that maintain early embryonic cells in an undifferentiated state while allowing them to proliferate. NANOG is a critical factor for maintaining pluripotency and its role in primordial germ cell differentiation has been well described. However, Nanog is expressed during gastrulation across all the posterior epiblast, and only later in development is its expression restricted to primordial germ cells. In this work, we unveiled a previously unknown mechanism by which Nanog specifically represses genes involved in anterior epiblast lineage. Analysis of transcriptional data from both embryonic stem cells and gastrulating mouse embryos revealed Pou3f1 expression to be negatively correlated with that of Nanog during the early stages of differentiation. We have functionally demonstrated Pou3f1 to be a direct target of NANOG by using a dual transgene system for the controlled expression of Nanog Use of Nanog null ES cells further demonstrated a role for Nanog in repressing a subset of anterior neural genes. Deletion of a NANOG binding site (BS) located nine kilobases downstream of the transcription start site of Pou3f1 revealed this BS to have a specific role in the regionalization of the expression of this gene in the embryo. Our results indicate an active role of Nanog inhibiting neural regulatory networks by repressing Pou3f1 at the onset of gastrulation.This article has an associated First Person interview with the joint first authors of the paper.

3.
Elife ; 82019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30958266

RESUMO

The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Mórula/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Perfilação da Expressão Gênica , Camundongos
4.
EMBO J ; 38(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30814124

RESUMO

Progenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog-deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers.


Assuntos
Linhagem da Célula , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Hematopoese , Proteína Homeobox Nanog/fisiologia , Células-Tronco Pluripotentes/citologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Pluripotentes/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética
5.
Curr Top Dev Biol ; 128: 59-80, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29477171

RESUMO

The trophectoderm (TE) is the first cell population to appear in the mammalian preimplantation embryo, as the result of the differentiation of totipotent blastomeres located on the outer surface of the late morula. Trophectodermal cells arrange in a monolayer covering the expanding blastocyst and acquire an epithelial phenotype with distinct apicobasal polarity and a basal lamina placed toward the blastocyst interior. During later development through the periimplantation and gastrulation stages, the TE gives rise to extraembryonic membranes and cell types that will eventually form most of the fetal placenta, the specialized organ through which the embryo obtains maternal nourishment necessary for subsequent exponential growth. The specification of the TE is controlled by the combination of morphological cues arising from cell polarity with differential activity of signaling pathways such as Hippo and Notch, and the restriction to outer cells of lineage specifiers such as CDX2. This is possibly the first symmetry-breaking decision undertaken by the uncommitted cells produced by a handful of mitosis divisions from the newly fertilized zygote. Understanding how this cell lineage is specified will therefore provide unique information about development, differentiation, and how the interplay between cellular morphology and signaling and regulatory factors results in a correctly 3D-patterned embryo.


Assuntos
Diferenciação Celular/genética , Ectoderma/citologia , Embrião de Mamíferos/citologia , Mamíferos/embriologia , Mamíferos/genética , Animais , Plasticidade Celular/genética , Redes Reguladoras de Genes
6.
Dev Dyn ; 246(4): 245-261, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27859869

RESUMO

The first stages of mammalian development, before implantation of the embryo in the maternal uterus, result in the establishment of three cell populations in the blastocyst: trophectoderm, epiblast, and primitive endoderm. These events involve only a small number of cells, and are initiated by morphological differences among them related to cell adhesion and polarity. Much attention has been paid to the master transcription factors that are critical for establishing and maintaining early lineage choices. Nevertheless, a large body of work also reveals that additional molecular mechanisms are involved. Here, we provide an updated view of the role of different signaling pathways in the first stages of mouse development, and how their cross-talk and interplay determine the initial lineage decisions occurring in the blastocyst. We will also discuss how these pathways are critical for translating cellular phenotypes, the product of the morphogenetic events occurring at these stages, into transcriptional responses and expression of lineage-specifying transcription factors. Developmental Dynamics 246:245-261, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Linhagem da Célula/fisiologia , Desenvolvimento Embrionário/fisiologia , Transdução de Sinais , Animais , Linhagem da Célula/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Morfogênese , Fenótipo
7.
Sci Rep ; 6: 27139, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27256674

RESUMO

The first intercellular differences during mammalian embryogenesis arise in the blastocyst, producing the inner cell mass and the trophectoderm. The trophectoderm is the first extraembryonic tissue and does not contribute to the embryo proper, its differentiation instead forming tissues that sustain embryonic development. Crucial roles in extraembryonic differentiation have been identified for certain transcription factors, but a comprehensive picture of the regulation of this early specification is still lacking. Here, we investigated whether the regulatory mechanisms involved in Cdx2 expression in the blastocyst are also utilized in the postimplantation embryo. We analyzed an enhancer that is regulated through Hippo and Notch in the blastocyst trophectoderm, unexpectedly finding that it is inactive in the extraembryonic structures at postimplantation stages. Further analysis identified other Cdx2 regulatory elements including a stem-cell specific regulatory sequence and an element that drives reporter expression in the trophectoderm, a subset of cells in the extraembryonic region of the postimplantation embryo and in trophoblast stem cells. The cross-comparison in this study of cis-regulatory elements employed in the blastocyst, stem cell populations and the postimplantation embryo provides new insights into early mammalian development and suggests a two-step mechanism in Cdx2 regulation.


Assuntos
Blastocisto/metabolismo , Fator de Transcrição CDX2/genética , Elementos Facilitadores Genéticos , Células-Tronco Fetais/metabolismo , Trofoblastos/metabolismo , Animais , Blastocisto/citologia , Fator de Transcrição CDX2/metabolismo , Diferenciação Celular , Células Cultivadas , Implantação do Embrião , Desenvolvimento Embrionário , Feminino , Células-Tronco Fetais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fatores de Transcrição/metabolismo , Trofoblastos/citologia
8.
Dev Cell ; 30(4): 410-22, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25127056

RESUMO

The first lineage choice in mammalian embryogenesis is that between the trophectoderm, which gives rise to the trophoblast of the placenta, and the inner cell mass, from which is derived the embryo proper and the yolk sac. The establishment of these lineages is preceded by the inside-versus-outside positioning of cells in the early embryo and stochastic expression of key transcription factors, which is then resolved into lineage-restricted expression. The regulatory inputs that drive this restriction and how they relate to cell position are largely unknown. Here, we show an unsuspected role of Notch signaling in regulating trophectoderm-specific expression of Cdx2 in cooperation with TEAD4. Notch activity is restricted to outer cells and is able to influence positional allocation of blastomeres, mediating preferential localization to the trophectoderm. Our results show that multiple signaling inputs at preimplantation stages specify the first embryonic lineages.


Assuntos
Blastocisto/metabolismo , Linhagem da Célula , Ectoderma/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Blastocisto/citologia , Fator de Transcrição CDX2 , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ectoderma/citologia , Ectoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Via de Sinalização Hippo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptor Notch1/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA