Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(6): e0269972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35763520

RESUMO

Proteoglycan glycosaminoglycan (GAG) chains are attached to a serine residue in the protein through a linkage series of sugars, the first of which is xylose. Xylosides are chemicals which compete with the xylose at the enzyme xylosyl transferase to prevent the attachment of GAG chains to proteins. These compounds have been employed at concentrations in the millimolar range as tools to study the role of GAG chains in proteoglycan function. In the course of our studies with xylosides, we conducted a dose-response curve for xyloside actions on neural cells. To our surprise, we found that concentrations of xylosides in the nanomolar to micromolar range had major effects on cell morphology of hippocampal neurons as well as of Neuro2a cells, affecting both actin and tubulin cytoskeletal dynamics. Such effects/morphological changes were not observed with higher xyloside concentrations. We found a dose-dependent alteration of GAG secretion by Neuro2a cells; however, concentrations of xylosides which were effective in altering neuronal morphology did not cause a large change in the rate of GAG chain secretion. In contrast, both low and high concentrations of xylosides altered HS and CS composition. RNAseq of treated cells demonstrated alterations in gene expression only after treatment with millimolar concentration of xylosides that had no effect on cell morphology. These observations support a novel action of xylosides on neuronal cells.


Assuntos
Glicosídeos , Xilose , Glicosaminoglicanos/metabolismo , Glicosídeos/química , Proteoglicanas/metabolismo , Xilose/farmacologia
2.
J Histochem Cytochem ; 69(1): 61-80, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936033

RESUMO

The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Neurogênese , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Movimento Celular , Humanos , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Sinapses/metabolismo
3.
Front Cell Neurosci ; 14: 208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848612

RESUMO

Traumatic spinal cord injury produces long-term neurological damage, and presents a significant public health problem with nearly 18,000 new cases per year in the U.S. The injury results in both acute and chronic changes in the spinal cord, ultimately resulting in the production of a glial scar, consisting of multiple cells including fibroblasts, macrophages, microglia, and reactive astrocytes. Within the scar, there is an accumulation of extracellular matrix (ECM) molecules-primarily tenascins and chondroitin sulfate proteoglycans (CSPGs)-which are considered to be inhibitory to axonal regeneration. In this review article, we discuss the role of CSPGs in the injury response, especially how sulfated glycosaminoglycan (GAG) chains act to inhibit plasticity and regeneration. This includes how sulfation of GAG chains influences their biological activity and interactions with potential receptors. Comprehending the role of CSPGs in the inhibitory properties of the glial scar provides critical knowledge in the much-needed production of new therapies.

4.
Exp Cell Res ; 389(2): 111911, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32061832

RESUMO

Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a six-transmembrane protein that belongs to the family of plasticity-related gene proteins, which is a novel brain-specific subclass of the lipid phosphate phosphatase superfamily. PLPPR1-5 have prominent roles in synapse formation and axonal pathfinding. We found that PLPPR1 overexpression in the mouse neuroblastoma cell line (Neuro2a) results in increase in cell adhesion and reduced cell migration. During migration, these cells leave behind long fibrous looking extensions of the plasma membrane causing a peculiar phenotype. Cells expressing PLPPR1 showed decreased actin turnover and decreased disassembly of focal adhesions. PLPPR1 also reduced active Rac1, and expressing dominant negative Rac1 produced a similar phenotype to overexpression of PLPPR1. The PLPPR1-induced phenotype of long fibers was reversed by introducing constitutively active Rac1. In summary, we show that PLPPR1 decreases active Rac1 levels that leads to cascade of events which increases cell adhesion.


Assuntos
Adesão Celular , Adesões Focais , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Neuroblastoma/patologia , Neuropeptídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Movimento Celular , Proteínas de Membrana/genética , Camundongos , Neuroblastoma/metabolismo , Neuropeptídeos/genética , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas rac1 de Ligação ao GTP/genética
5.
Exp Eye Res ; 190: 107859, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705897

RESUMO

The accumulation of chondroitin sulfate proteoglycans (CSPGs) in the glial scar following acute damage to the central nervous system (CNS) limits the regeneration of injured axons. Given the rich diversity of CSPG core proteins and patterns of GAG sulfation, identifying the composition of these CSPGs is essential for understanding their roles in injury and repair. Differential expression of core proteins and sulfation patterns have been characterized in the brain and spinal cord of mice and rats, but a comprehensive study of these changes following optic nerve injury has not yet been performed. Here, we show that the composition of CSPGs in the optic nerve and retina following optic nerve crush (ONC) in mice and rats exhibits an increase in aggrecan, brevican, phosphacan, neurocan and versican, similar to changes following spinal cord injury. We also observe an increase in inhibitory 4-sulfated (4S) GAG chains, which suggests that the persistence of CSPGs in the glial scar opposes the growth of CNS axons, thereby contributing to the failure of regeneration and recovery of function.


Assuntos
Lesões por Esmagamento/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Nervo Óptico/metabolismo , Retina/metabolismo , Agrecanas/metabolismo , Animais , Brevicam/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Glicosaminoglicanos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Neurocam/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Sulfamonometoxina , Trimetoprima , Versicanas/metabolismo
6.
Elife ; 72018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762123

RESUMO

The failure of mammalian CNS neurons to regenerate their axons derives from a combination of intrinsic deficits and extrinsic factors. Following injury, chondroitin sulfate proteoglycans (CSPGs) within the glial scar inhibit axonal regeneration, an action mediated by the sulfated glycosaminoglycan (GAG) chains of CSPGs, especially those with 4-sulfated (4S) sugars. Arylsulfatase B (ARSB) selectively cleaves 4S groups from the non-reducing ends of GAG chains without disrupting other, growth-permissive motifs. We demonstrate that ARSB is effective in reducing the inhibitory actions of CSPGs both in in vitro models of the glial scar and after optic nerve crush (ONC) in adult mice. ARSB is clinically approved for replacement therapy in patients with mucopolysaccharidosis VI and therefore represents an attractive candidate for translation to the human CNS.


Assuntos
Axônios/efeitos dos fármacos , Axônios/fisiologia , Proteoglicanas de Sulfatos de Condroitina/química , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Traumatismos do Nervo Óptico/tratamento farmacológico , Regeneração/efeitos dos fármacos , Sulfatos/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , N-Acetilgalactosamina-4-Sulfatase/administração & dosagem , Resultado do Tratamento
7.
Bioorg Med Chem Lett ; 27(22): 5027-5030, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29033235

RESUMO

Xylosides are small molecules that serve as primers of glycosaminoglycan biosynthesis. Xyloside mediated modulation of biological functions depends on the extent of priming activity and fine structures of primed GAG chains. In earlier studies, copper (Cu) catalyzed synthesis of click-xylosides and their priming activity were extensively documented. In the current study, ruthenium (Ru) mediated catalysis was employed to synthesize xylosides with a 1,5-linkage between the xylose and the triazole ring instead of a 1,4-linkage as found in Cu-catalyzed click-xyloside synthesis. Mono- and bis-click-xylosides were synthesized using each catalytic method and their glycosaminoglycan priming activity was assessed in vitro using a cellular system. Ru-catalyzed click-xylosides showed a higher priming activity as measured by incorporation of radioactive sulfate into primed glycosaminoglycan chains. This study demonstrates that altering the linkage of the aglycone to the triazole ring changes the priming activity. Computational modeling provides a molecular rationale for higher priming ability of Ru-mediated click-xylosides. Higher GAG priming activity is attributed to the formation of more stable interactions between the 1,5-linked xylosides and ß-1,4-galactosyltransferase 7 (ß4GalT7).


Assuntos
Cobre/química , Glicosaminoglicanos/química , Glicosídeos/química , Rutênio/química , Sítios de Ligação , Catálise , Química Click , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Glicosaminoglicanos/síntese química , Glicosídeos/síntese química , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína
8.
Dev Neurobiol ; 77(12): 1401-1412, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29055099

RESUMO

In the brain, the extracellular matrix (ECM) plays a central role during neural development and thus modulates critical-period regulated behavioral ontogeny. The major components of the ECM are glycosaminoglycans (GAGs) including chondroitin sulfate (CS). However, the specific roles of GAGs in behavioral development are largely unknown. It has been shown that xylosides affect the biological functions of GAGs through modulating GAG biosynthesis. Particularly, xylosides affect GAG biosynthesis through priming of GAG chains (priming activity), competing with endogenous core proteins that carry GAG initiation sites (decoy activity), or both. Using birdsong as our model, we investigated, for the first time, how xyloside-mediated modulation of GAG biogenesis affects song development. Xylosides infused into motor cortex of juvenile birds alter song development by specifically affecting ontogeny of the stereotyped sequence rather than the acoustic structure of syllables. Further analyses reveal that observed changes can be attributed to the priming activity rather than the decoy activity of xylosides. Collectively, these results suggest that regulation of GAG biogenesis through chemical biology approaches may allow promising therapeutic interventions of critical-period-dependent central nervous system plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1401-1412, 2017.


Assuntos
Glicosaminoglicanos/biossíntese , Centro Vocal Superior/efeitos dos fármacos , Comportamento Estereotipado/fisiologia , Vocalização Animal/fisiologia , Análise de Variância , Animais , Ontologias Biológicas , Cromatografia Líquida de Alta Pressão , Tentilhões , Glicosídeos/química , Glicosídeos/farmacologia , Centro Vocal Superior/fisiologia , Masculino , Microinjeções , Biossíntese de Proteínas/efeitos dos fármacos , Proteoglicanas/metabolismo , Espectrografia do Som , Comportamento Estereotipado/efeitos dos fármacos , Fatores de Tempo , Vocalização Animal/efeitos dos fármacos
9.
FASEB J ; 31(11): 5049-5067, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32083386

RESUMO

Tumor cell metastasis to the brain involves cell migration through biochemically and physically complex microenvironments at the blood-brain barrier (BBB). The current understanding of tumor cell migration across the BBB is limited. We hypothesize that an interplay between biochemical cues and physical cues at the BBB affects the mechanisms of brain metastasis. We found that astrocyte conditioned medium(ACM) applied directly to tumor cells increased tumor cell velocity, induced elongation, and promoted actin stress fiber organization. Notably, treatment of the extracellular matrix with ACM led to even more significant increases in tumor cell velocity in comparison with ACM treatment of cells directly. Furthermore, inhibiting matrix metalloproteinases in ACM reversed ACM's effect on tumor cells. The effects of ACM on tumor cell morphology and migration also depended on astrocytes' activation state. Finally, using a microfluidic device, we found that the effects of ACM were abrogated in confinement. Overall, our work demonstrates that astrocyte-secreted factors alter migration and morphology of metastatic breast tumor cells, and this effect depends on the cells' mechanical microenvironment.-Shumakovich, M. A., Mencio, C. P., Siglin, J. S., Moriarty, R. A., Geller, H. M., Stroka, K. M. Astrocytes from the brain microenvironment alter migration and morphology of metastatic breast cancer cells. FASEB J. 31, 5049-5067 (2017). www.fasebj.org.

10.
ACS Chem Biol ; 10(6): 1485-94, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25742429

RESUMO

The structural diversity of natural sulfated glycosaminoglycans (GAGs) presents major promise for discovery of chemical biology tools or therapeutic agents. Yet, few GAGs have been identified so far to exhibit this promise. We reasoned that a simple approach to identify such GAGs is to explore sequences containing rare residues, for example, 2-O-sulfonated glucuronic acid (GlcAp2S). Genetic algorithm-based computational docking and filtering suggested that GlcAp2S containing heparan sulfate (HS) may exhibit highly selective recognition of antithrombin, a key plasma clot regulator. HS containing only GlcAp2S and 2-N-sulfonated glucosamine residues, labeled as HS2S2S, was chemoenzymatically synthesized in just two steps and was found to preferentially bind antithrombin over heparin cofactor II, a closely related serpin. Likewise, HS2S2S directly inhibited thrombin but not factor Xa, a closely related protease. The results show that a HS containing rare GlcAp2S residues exhibits the unusual property of selective antithrombin activation and direct thrombin inhibition. More importantly, HS2S2S is also the first molecule to activate antithrombin nearly as well as the heparin pentasaccharide although being completely devoid of the critical 3-O-sulfonate group. Thus, this work shows that novel functions and mechanisms may be uncovered by studying rare GAG residues/sequences.


Assuntos
Antitrombinas/química , Ácido Glucurônico/química , Glicosaminoglicanos/química , Bibliotecas de Moléculas Pequenas , Algoritmos , Sítios de Ligação , Fator Xa/química , Cofator II da Heparina/antagonistas & inibidores , Cofator II da Heparina/química , Heparitina Sulfato/química , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica
11.
Biomol Concepts ; 4(3): 233-57, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25285176

RESUMO

Proteoglycans (PGs) regulate diverse functions in the central nervous system (CNS) by interacting with a number of growth factors, matrix proteins, and cell surface molecules. Heparan sulfate (HS) and chondroitin sulfate (CS) are two major glycosaminoglycans present in the PGs of the CNS. The functionality of these PGs is to a large extent dictated by the fine sulfation patterns present on their glycosaminoglycan (GAG) chains. In the past 15 years, there has been a significant expansion in our knowledge on the role of HS and CS chains in various neurological processes, such as neuronal growth, regeneration, plasticity, and pathfinding. However, defining the relation between distinct sulfation patterns of the GAGs and their functionality has thus far been difficult. With the emergence of novel tools for the synthesis of defined GAG structures, and techniques for their characterization, we are now in a better position to explore the structure-function relation of GAGs in the context of their sulfation patterns. In this review, we discuss the importance of GAGs on CNS development, injury, and disorders with an emphasis on their sulfation patterns. Finally, we outline several GAG-based therapeutic strategies to exploit GAG chains for ameliorating various CNS disorders.


Assuntos
Sistema Nervoso Central/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Animais , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Sulfatos de Condroitina/química , Heparitina Sulfato/química , Humanos , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA