Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38659962

RESUMO

Multi-platform mutational, proteomic, and metabolomic spatial mapping was used on the whole-organ scale to identify the molecular evolution of bladder cancer from mucosal field effects. We identified complex proteomic and metabolomic dysregulations in microscopically normal areas of bladder mucosa adjacent to dysplasia and carcinoma in situ. The mutational landscape developed in a background of complex defects of protein homeostasis which included dysregulated nucleocytoplasmic transport, splicesome, ribosome biogenesis, and peroxisome. These changes were combined with altered urothelial differentiation which involved lipid metabolism and protein degradations controlled by PPAR. The complex alterations of proteome were accompanied by dysregulation of gluco-lipid energy-related metabolism. The analysis of mutational landscape identified three types of mutations based on their geographic distribution and variant allele frequencies. The most common were low frequency α mutations restricted to individual mucosal samples. The two other groups of mutations were associated with clonal expansion. The first of this group referred to as ß mutations occurred at low frequencies across the mucosa. The second of this group called γ mutations increased in frequency with disease progression. Modeling of the mutations revealed that carcinogenesis may span nearly 30 years and can be divided into dormant and progressive phases. The α mutations developed gradually in the dormant phase. The progressive phase lasted approximately five years and was signified by the advent of ß mutations, but it was driven by γ mutations which developed during the last 2-3 years of disease progression to invasive cancer. Our study indicates that the understanding of complex alterations involving mucosal microenvironment initiating bladder carcinogenesis can be inferred from the multi-platform whole-organ mapping.

2.
Cell Rep ; 43(5): 114146, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38676926

RESUMO

We describe a strategy that combines histologic and molecular mapping that permits interrogation of the chronology of changes associated with cancer development on a whole-organ scale. Using this approach, we present the sequence of alterations around RB1 in the development of bladder cancer. We show that RB1 is not involved in initial expansion of the preneoplastic clone. Instead, we found a set of contiguous genes that we term "forerunner" genes whose silencing is associated with the development of plaque-like field effects initiating carcinogenesis. Specifically, we identified five candidate forerunner genes (ITM2B, LPAR6, MLNR, CAB39L, and ARL11) mapping near RB1. Two of these genes, LPAR6 and CAB39L, are preferentially downregulated in the luminal and basal subtypes of bladder cancer, respectively. Their loss of function dysregulates urothelial differentiation, sensitizing the urothelium to N-butyl-N-(4-hydroxybutyl)nitrosamine-induced cancers, which recapitulate the luminal and basal subtypes of human bladder cancer.


Assuntos
Carcinogênese , Diferenciação Celular , Neoplasias da Bexiga Urinária , Urotélio , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinogênese/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos C57BL , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Urotélio/patologia , Urotélio/metabolismo
3.
Genet Med ; 25(12): 100983, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746849

RESUMO

PURPOSE: Previous work identified rare variants in DSTYK associated with human congenital anomalies of the kidney and urinary tract (CAKUT). Here, we present a series of mouse and human studies to clarify the association, penetrance, and expressivity of DSTYK variants. METHODS: We phenotypically characterized Dstyk knockout mice of 3 separate inbred backgrounds and re-analyzed the original family segregating the DSTYK c.654+1G>A splice-site variant (referred to as "SSV" below). DSTYK loss of function (LOF) and SSVs were annotated in individuals with CAKUT, epilepsy, or amyotrophic lateral sclerosis vs controls. A phenome-wide association study analysis was also performed using United Kingdom Biobank (UKBB) data. RESULTS: Results demonstrate ∼20% to 25% penetrance of obstructive uropathy, at least, in C57BL/6J and FVB/NJ Dstyk-/- mice. Phenotypic penetrance increased to ∼40% in C3H/HeJ mutants, with mild-to-moderate severity. Re-analysis of the original family segregating the rare SSV showed low penetrance (43.8%) and no alternative genetic causes for CAKUT. LOF DSTYK variants burden showed significant excess for CAKUT and epilepsy vs controls and an exploratory phenome-wide association study supported association with neurological disorders. CONCLUSION: These data support causality for DSTYK LOF variants and highlights the need for large-scale sequencing studies (here >200,000 cases) to accurately assess causality for genes and variants to lowly penetrant traits with common population prevalence.


Assuntos
Epilepsia , Sistema Urinário , Anormalidades Urogenitais , Animais , Camundongos , Humanos , Penetrância , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Anormalidades Urogenitais/genética , Rim/anormalidades , Fatores de Risco , Epilepsia/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
4.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662238

RESUMO

Bladder cancers (BCs) can be divided into 2 major subgroups displaying distinct clinical behaviors and mutational profiles: basal/squamous (BASQ) tumors that tend to be muscle invasive, and luminal/papillary (LP) tumors that are exophytic and tend to be non-invasive. Pparg is a likely driver of LP BC and has been suggested to act as a tumor suppressor in BASQ tumors, where it is likely suppressed by MEK-dependent phosphorylation. Here we tested the effects of rosiglitazone, a Pparg agonist, in a mouse model of BBN-induced muscle invasive BC. Rosiglitazone activated Pparg signaling in suprabasal epithelial layers of tumors but not in basal-most layers containing highly proliferative invasive cells, reducing proliferation but not affecting tumor survival. Addition of trametinib, a MEK inhibitor, induced Pparg signaling throughout all tumor layers, and eradicated 91% of tumors within 7-days of treatment. The 2-drug combination also activated a luminal differentiation program, reversing squamous metaplasia in the urothelium of tumor-bearing mice. Paired ATAC-RNA-seq analysis revealed that tumor apoptosis was most likely linked to down-regulation of Bcl-2 and other pro-survival genes, while the shift from BASQ to luminal differentiation was associated with activation of the retinoic acid pathway and upregulation of Kdm6a, a lysine demethylase that facilitates retinoid-signaling. Our data suggest that rosiglitazone, trametinib, and retinoids, which are all FDA approved, may be clinically active in BASQ tumors in patients. That muscle invasive tumors are populated by basal and suprabasal cell types with different responsiveness to PPARG agonists will be an important consideration when designing new treatments.

5.
Mol Cell ; 82(20): 3901-3918.e7, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206767

RESUMO

How cancer-associated chromatin abnormalities shape tumor-immune interaction remains incompletely understood. Recent studies have linked DNA hypomethylation and de-repression of retrotransposons to anti-tumor immunity through the induction of interferon response. Here, we report that inactivation of the histone H3K36 methyltransferase NSD1, which is frequently found in squamous cell carcinomas (SCCs) and induces DNA hypomethylation, unexpectedly results in diminished tumor immune infiltration. In syngeneic and genetically engineered mouse models of head and neck SCCs, NSD1-deficient tumors exhibit immune exclusion and reduced interferon response despite high retrotransposon expression. Mechanistically, NSD1 loss results in silencing of innate immunity genes, including the type III interferon receptor IFNLR1, through depletion of H3K36 di-methylation (H3K36me2) and gain of H3K27 tri-methylation (H3K27me3). Inhibition of EZH2 restores immune infiltration and impairs the growth of Nsd1-mutant tumors. Thus, our work uncovers a druggable chromatin cross talk that regulates the viral mimicry response and enables immune evasion of DNA hypomethylated tumors.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Histona Metiltransferases , Evasão Tumoral , Animais , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Cromatina , Metilação de DNA , Neoplasias de Cabeça e Pescoço/genética , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Interferons/genética , Proteínas Nucleares/metabolismo , Receptores de Interferon/genética , Retroelementos , Evasão Tumoral/genética
6.
Front Cell Infect Microbiol ; 12: 909799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782131

RESUMO

The anaerobic actinobacterium Gardnerella was first isolated from the bladder by suprapubic aspiration more than 50 years ago. Since then, Gardnerella has been increasingly recognized as a common and often abundant member of the female urinary microbiome (urobiome). Some studies even suggest that the presence of Gardnerella is associated with urological disorders in women. We recently reported that inoculation of Gardnerella into the bladders of mice results in urothelial exfoliation. Here, we performed whole bladder RNA-seq in our mouse model to identify additional host pathways involved in the response to Gardnerella bladder exposure. The transcriptional response to Gardnerella reflected the urothelial turnover that is a consequence of exfoliation while also illustrating the activation of pathways involved in inflammation and immunity. Additional timed exposure experiments in mice provided further evidence of a potentially clinically relevant consequence of bladder exposure to Gardnerella-increased susceptibility to subsequent UTI caused by uropathogenic Escherichia coli. Together, these data provide a broader picture of the bladder's response to Gardnerella and lay the groundwork for future studies examining the impact of Gardnerella on bladder health.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Infecções por Escherichia coli/microbiologia , Feminino , Gardnerella , Expressão Gênica , Humanos , Camundongos , Bexiga Urinária/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética
7.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35521701

RESUMO

The urothelium of the bladder functions as a waterproof barrier between tissue and outflowing urine. Largely quiescent during homeostasis, this unique epithelium rapidly regenerates in response to bacterial or chemical injury. The specification of the proper cell types during development and injury repair is crucial for tissue function. This Review surveys the current understanding of urothelial progenitor populations in the contexts of organogenesis, regeneration and tumorigenesis. Furthermore, we discuss pathways and signaling mechanisms involved in urothelial differentiation, and consider the relevance of this knowledge to stem cell biology and tissue regeneration.


Assuntos
Transformação Celular Neoplásica , Urotélio , Diferenciação Celular/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Células-Tronco , Bexiga Urinária , Urotélio/fisiologia
8.
Cancer Discov ; 12(4): 1002-1021, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078784

RESUMO

The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib has significantly prolonged progression-free survival (PFS) in patients with EGFR-mutant lung cancer, including those with brain metastases. However, despite striking initial responses, osimertinib-treated patients eventually develop lethal metastatic relapse, often to the brain. Although osimertinib-refractory brain relapse is a major clinical challenge, its underlying mechanisms remain poorly understood. Using metastatic models of EGFR-mutant lung cancer, we show that cancer cells expressing high intracellular S100A9 escape osimertinib and initiate brain relapses. Mechanistically, S100A9 upregulates ALDH1A1 expression and activates the retinoic acid (RA) signaling pathway in osimertinib-refractory cancer cells. We demonstrate that the genetic repression of S100A9, ALDH1A1, or RA receptors (RAR) in cancer cells, or treatment with a pan-RAR antagonist, dramatically reduces brain metastasis. Importantly, S100A9 expression in cancer cells correlates with poor PFS in osimertinib-treated patients. Our study, therefore, identifies a novel, therapeutically targetable S100A9-ALDH1A1-RA axis that drives brain relapse. SIGNIFICANCE: Treatment with the EGFR TKI osimertinib prolongs the survival of patients with EGFR-mutant lung cancer; however, patients develop metastatic relapses, often to the brain. We identified a novel intracellular S100A9-ALDH1A1-RA signaling pathway that drives lethal brain relapse and can be targeted by pan-RAR antagonists to prevent cancer progression and prolong patient survival. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Família Aldeído Desidrogenase 1 , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Encéfalo/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Retinal Desidrogenase/genética , Transdução de Sinais , Tretinoína/farmacologia
9.
Nat Commun ; 12(1): 6160, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697317

RESUMO

Pparg, a nuclear receptor, is downregulated in basal subtype bladder cancers that tend to be muscle invasive and amplified in luminal subtype bladder cancers that tend to be non-muscle invasive. Bladder cancers derive from the urothelium, one of the most quiescent epithelia in the body, which is composed of basal, intermediate, and superficial cells. We find that expression of an activated form of Pparg (VP16;Pparg) in basal progenitors induces formation of superficial cells in situ, that exit the cell cycle, and do not form tumors. Expression in basal progenitors that have been activated by mild injury however, results in luminal tumor formation. We find that these tumors are immune deserted, which may be linked to down-regulation of Nf-kb, a Pparg target. Interestingly, some luminal tumors begin to shift to basal subtype tumors with time, down-regulating Pparg and other luminal markers. Our findings have important implications for treatment and diagnosis of bladder cancer.


Assuntos
PPAR gama/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese , Carcinógenos/toxicidade , Diferenciação Celular , Proliferação de Células , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , PPAR gama/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/metabolismo , Urotélio/efeitos dos fármacos , Urotélio/imunologia , Urotélio/patologia
10.
Development ; 147(12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32467243

RESUMO

Retinoic acid (RA) signaling is essential for multiple developmental processes, including appropriate pancreas formation from the foregut endoderm. RA is also required to generate pancreatic progenitors from human pluripotent stem cells. However, the role of RA signaling during endocrine specification has not been fully explored. In this study, we demonstrate that the disruption of RA signaling within the NEUROG3-expressing endocrine progenitor population impairs mouse ß cell differentiation and induces ectopic expression of crucial δ cell genes, including somatostatin. In addition, the inhibition of the RA pathway in hESC-derived pancreatic progenitors downstream of NEUROG3 induction impairs insulin expression. We further determine that RA-mediated regulation of endocrine cell differentiation occurs through Wnt pathway components. Together, these data demonstrate the importance of RA signaling in endocrine specification and identify conserved mechanisms by which RA signaling directs pancreatic endocrine cell fate.


Assuntos
Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/citologia , Receptores do Ácido Retinoico/deficiência , Receptores do Ácido Retinoico/genética , Somatostatina/genética , Somatostatina/metabolismo , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Transativadores/deficiência , Transativadores/genética , Proteínas Wnt/metabolismo
11.
Oncogene ; 39(6): 1302-1317, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31636388

RESUMO

Intratumoral heterogeneity in bladder cancer is a barrier to accurate molecular sub-classification and treatment efficacy. However, individual cellular and mechanistic contributions to tumor heterogeneity are controversial. We examined potential mechanisms of FOXA1 and PTEN inactivation in bladder cancer and their contribution to tumor heterogeneity. These analyses were complemented with inactivation of FOXA1 and PTEN in intermediate and luminal mouse urothelium. We show inactivation and reduced expression of FOXA1 and PTEN is prevalent in human disease, where PTEN and FOXA1 are downregulated by allelic loss and site-specific DNA hypermethylation, respectively. Conditional inactivation of both Foxa1 and Pten in intermediate/luminal cells in mice results in development of bladder cancer exhibiting squamous features as well as enhanced sensitivity to a bladder-specific carcinogen. In addition, FOXA1 is hypermethylated in basal bladder cancer cell lines, and this is reversed by treatment with DNA methyltransferase inhibitors. By integrating human correlative and in vivo studies, we define a critical role for PTEN loss and epigenetic silencing of FOXA1 in heterogeneous human disease and show genetic targeting of luminal/intermediate cells in mice drives squamous differentiation.


Assuntos
Carcinoma de Células Escamosas/patologia , Diferenciação Celular , Metilação de DNA , Fator 3-alfa Nuclear de Hepatócito/genética , Perda de Heterozigosidade , PTEN Fosfo-Hidrolase/genética , Neoplasias da Bexiga Urinária/patologia , Animais , Apoptose , Biomarcadores Tumorais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Musculares/genética , Neoplasias Musculares/metabolismo , Neoplasias Musculares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
12.
Nat Commun ; 10(1): 4589, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597917

RESUMO

The urothelium is an epithelial barrier lining the bladder that protects against infection, fluid exchange and damage from toxins. The nuclear receptor Pparg promotes urothelial differentiation in vitro, and Pparg mutations are associated with bladder cancer. However, the function of Pparg in the healthy urothelium is unknown. Here we show that Pparg is critical in urothelial cells for mitochondrial biogenesis, cellular differentiation and regulation of inflammation in response to urinary tract infection (UTI). Superficial cells, which are critical for maintaining the urothelial barrier, fail to mature in Pparg mutants and basal cells undergo squamous-like differentiation. Pparg mutants display persistent inflammation after UTI, and Nf-KB, which is transiently activated in response to infection in the wild type urothelium, persists for months. Our observations suggest that in addition to its known roles in adipogegnesis and macrophage differentiation, that Pparg-dependent transcription plays a role in the urothelium controlling mitochondrial function development and regeneration.


Assuntos
Diferenciação Celular , Células Epiteliais/metabolismo , Expressão Gênica , Genes Mitocondriais/genética , PPAR gama/metabolismo , Urotélio/metabolismo , Animais , Humanos , Inflamação/complicações , Inflamação/genética , Camundongos Knockout , Camundongos Transgênicos , Mutação , PPAR gama/genética , Bexiga Urinária/citologia , Neoplasias da Bexiga Urinária/genética , Infecções Urinárias/complicações , Urotélio/citologia
13.
Dev Cell ; 48(6): 743-744, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30913403

RESUMO

Ectopic or supernumerary ureteric bud (UB) branches can result in urinary tract obstruction. In this issue of Developmental Cell, Zhang et al. (2019) show that Ret and Fat4, which are expressed on the surface of the UB and surrounding stromal cells, respectively, interact directly to restrict branching during UB outgrowth.


Assuntos
Ureter , Dieta , Rim , Organogênese , Transdução de Sinais
14.
Cell Rep ; 25(2): 464-477.e4, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304685

RESUMO

The urothelium is an epithelia barrier lined by a luminal layer of binucleated, octoploid, superficial cells. Superficial cells are critical for production and transport of uroplakins, a family of proteins that assemble into a waterproof crystalline plaque that helps protect against infection and toxic substances. Adult urothelium is nearly quiescent, but rapidly regenerates in response to injury. Yet the mechanism by which binucleated, polyploid, superficial cells are produced remains unclear. Here, we show that superficial cells are likely to be derived from a population of binucleated intermediate cells, which are produced from mononucleated intermediate cells via incomplete cytokinesis. We show that binucleated intermediate and superficial cells increase DNA content via endoreplication, passing through S phase without entering mitosis. The urothelium can be permanently damaged by repetitive or chronic injury or disease. Identification of the mechanism by which superficial cells are produced may be important for developing strategies for urothelial repair.


Assuntos
Citocinese , Endorreduplicação , Mitose , Poliploidia , Urotélio/fisiopatologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Feminino , Masculino , Camundongos , Urotélio/lesões
15.
Proc Natl Acad Sci U S A ; 115(33): 8394-8399, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061411

RESUMO

The bladder's remarkable regenerative capacity had been thought to derive exclusively from its own progenitors. While examining consequences of DNA methyltransferase 1 (Dnmt1) inactivation in mouse embryonic bladder epithelium, we made the surprising discovery that Wolffian duct epithelial cells can support bladder regeneration. Conditional Dnmt1 inactivation in mouse urethral and bladder epithelium triggers widespread apoptosis, depletes basal and intermediate bladder cells, and disrupts uroplakin protein expression. These events coincide with Wolffian duct epithelial cell recruitment into Dnmt1 mutant urethra and bladder where they are reprogrammed to express bladder markers, including FOXA1, keratin 5, P63, and uroplakin. This is evidence that Wolffian duct epithelial cells are summoned in vivo to replace damaged bladder epithelium and function as a reservoir of cells for bladder regeneration.


Assuntos
Bexiga Urinária/fisiologia , Urotélio/fisiologia , Ductos Mesonéfricos/fisiologia , Animais , Animais Recém-Nascidos , Apoptose , Linhagem da Célula , DNA (Citosina-5-)-Metiltransferase 1/fisiologia , Dano ao DNA , Metilação de DNA , Células Epiteliais/fisiologia , Camundongos , Regeneração
17.
Am J Hum Genet ; 101(5): 789-802, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100090

RESUMO

Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10-5 for novel LOF, increased to p = 4.1 × 10-6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10-7). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD.


Assuntos
Anormalidades Congênitas/genética , Exoma/genética , Nefropatias/congênito , Rim/anormalidades , Mutação/genética , Proteínas de Neoplasias/genética , Alelos , Animais , Estudos de Casos e Controles , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Heterogeneidade Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Hereditariedade/genética , Homozigoto , Humanos , Nefropatias/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Fenótipo , RNA Longo não Codificante/genética , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética , Peixe-Zebra
18.
Bladder Cancer ; 3(3): 211-223, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28824949

RESUMO

The Third Annual Albert Institute Bladder Symposium was held on September 8-10th, 2016, in Denver Colorado. Participants discussed several critical topics in the field of bladder cancer: 1) Best practices for tissue analysis and use to optimize correlative studies, 2) Modeling bladder cancer to facilitate understanding and innovation, 3) Targeted therapies for bladder cancer, 4) Tumor phylogeny in bladder cancer, 5) New Innovations in bladder cancer diagnostics. Our understanding of and approach to treating urothelial carcinoma is undergoing rapid advancement. Preclinical models of bladder cancer have been leveraged to increase our basic and mechanistic understanding of the disease. With the approval of immune checkpoint inhibitors for the treatment of advanced urothelial carcinoma, the treatment approach for these patients has quickly changed. In this light, molecularly-defined subtypes of bladder cancer and appropriate pre-clinical models are now essential to the further advancement and appropriate application of these therapeutic improvements. The optimal collection and processing of clinical urothelial carcinoma tissues samples will also be critical in the development of predictive biomarkers for therapeutic selection. Technological advances in other areas including optimal imaging technologies and micro/nanotechnologies are being applied to bladder cancer, especially in the localized setting, and hold the potential for translational impact in the treatment of bladder cancer patients. Taken together, advances in several basic science and clinical areas are now converging in bladder cancer. These developments hold the promise of shaping and improving the clinical care of those with the disease.

19.
Biores Open Access ; 6(1): 35-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560089

RESUMO

Previous work demonstrated restoration of a bioequivalent bladder within 8 weeks of removing the majority of the bladder (subtotal cystectomy or STC) in rats. The goal of the present study was to extend our investigations of bladder repair to the murine model, to harness the power of mouse genetics to delineate the cellular and molecular mechanisms responsible for the observed robust bladder regrowth. Female C57 black mice underwent STC, and at 4, 8, and 12 weeks post-STC, bladder repair and function were assessed via cystometry, ex vivo pharmacologic organ bath studies, and T2-weighted magnetic resonance imaging (MRI). Histology was also performed to measure bladder wall thickness. We observed a time-dependent increase in bladder capacity (BC) following STC, such that 8 and 12 weeks post-STC, BC and micturition volumes were indistinguishable from those of age-matched non-STC controls and significantly higher than observed at 4 weeks. MRI studies confirmed that bladder volume was indistinguishable within 3 months (11 weeks) post-STC. Additionally, bladders emptied completely at all time points studied (i.e., no increases in residual volume), consistent with functional bladder repair. At 8 and 12 weeks post-STC, there were no significant differences in bladder wall thickness or in the different components (urothelium, lamina propria, or smooth muscle layers) of the bladder wall compared with age-matched control animals. The maximal contractile response to pharmacological activation and electrical field stimulation increased over time in isolated tissue strips from repaired bladders but remained lower at all time points compared with controls. We have established and validated a murine model for the study of de novo organ repair that will allow for further mechanistic studies of this phenomenon after, for example, genetic manipulation.

20.
Nat Rev Urol ; 14(2): 98-106, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27898096

RESUMO

Genomic and transcriptional studies have identified discrete molecular subtypes of bladder cancer. These observations could be the starting point to identify new treatments. Several members of the forkhead box (FOX) superfamily of transcription factors have been found to be differentially expressed in the different bladder cancer subtypes. In addition, the FOXA protein family are key regulators of embryonic bladder development and patterning. Both experimental and clinical data support a role for FOXA1 and FOXA2 in urothelial carcinoma. FOXA1 is expressed in embryonic and adult urothelium and its expression is altered in urothelial carcinomas and across disparate molecular bladder cancer subtypes. FOXA2 is normally absent from the adult urothelium, but developmental studies identified FOXA2 as a marker of a transient urothelial progenitor cell population during bladder development. Studies also implicate FOXA2 in bladder cancer and several other FOX proteins might be involved in development and/or progression of this disease; for example, FOXA1 and FOXO3A have been associated with clinical patient outcomes. Future studies should investigate to what extent and by which mechanisms FOX proteins might be directly involved in bladder cancer pathogenesis and treatment responses.


Assuntos
Biomarcadores Tumorais/biossíntese , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/biossíntese , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores Tumorais/genética , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Neoplasias da Bexiga Urinária/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA