Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6538, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095358

RESUMO

Muscle invasive bladder cancers (BCs) can be divided into 2 major subgroups-basal/squamous (BASQ) tumors and luminal tumors. Since Pparg has low or undetectable expression in BASQ tumors, we tested the effects of rosiglitazone, Pparg agonist, in a mouse model of BASQ BC. We find that rosiglitazone reduces proliferation while treatment with rosiglitazone plus trametinib, a MEK inhibitor, induces apoptosis and reduces tumor volume by 91% after 1 month. Rosiglitazone and trametinib also induce a shift from BASQ to luminal differentiation in tumors, which our analysis suggests is mediated by retinoid signaling, a pathway known to drive the luminal differentiation program. Our data suggest that rosiglitazone, trametinib, and retinoids, which are all FDA approved, may be clinically active in BASQ tumors in patients.


Assuntos
Apoptose , Proliferação de Células , Modelos Animais de Doenças , Piridonas , Pirimidinonas , Rosiglitazona , Neoplasias da Bexiga Urinária , Animais , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Piridonas/farmacologia , Piridonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico , Camundongos , Apoptose/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Invasividade Neoplásica , Feminino , PPAR gama/metabolismo , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Retinoides/farmacologia , Retinoides/uso terapêutico
2.
Res Sq ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38659962

RESUMO

Multi-platform mutational, proteomic, and metabolomic spatial mapping was used on the whole-organ scale to identify the molecular evolution of bladder cancer from mucosal field effects. We identified complex proteomic and metabolomic dysregulations in microscopically normal areas of bladder mucosa adjacent to dysplasia and carcinoma in situ. The mutational landscape developed in a background of complex defects of protein homeostasis which included dysregulated nucleocytoplasmic transport, splicesome, ribosome biogenesis, and peroxisome. These changes were combined with altered urothelial differentiation which involved lipid metabolism and protein degradations controlled by PPAR. The complex alterations of proteome were accompanied by dysregulation of gluco-lipid energy-related metabolism. The analysis of mutational landscape identified three types of mutations based on their geographic distribution and variant allele frequencies. The most common were low frequency α mutations restricted to individual mucosal samples. The two other groups of mutations were associated with clonal expansion. The first of this group referred to as ß mutations occurred at low frequencies across the mucosa. The second of this group called γ mutations increased in frequency with disease progression. Modeling of the mutations revealed that carcinogenesis may span nearly 30 years and can be divided into dormant and progressive phases. The α mutations developed gradually in the dormant phase. The progressive phase lasted approximately five years and was signified by the advent of ß mutations, but it was driven by γ mutations which developed during the last 2-3 years of disease progression to invasive cancer. Our study indicates that the understanding of complex alterations involving mucosal microenvironment initiating bladder carcinogenesis can be inferred from the multi-platform whole-organ mapping.

3.
Cell Rep ; 43(5): 114146, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38676926

RESUMO

We describe a strategy that combines histologic and molecular mapping that permits interrogation of the chronology of changes associated with cancer development on a whole-organ scale. Using this approach, we present the sequence of alterations around RB1 in the development of bladder cancer. We show that RB1 is not involved in initial expansion of the preneoplastic clone. Instead, we found a set of contiguous genes that we term "forerunner" genes whose silencing is associated with the development of plaque-like field effects initiating carcinogenesis. Specifically, we identified five candidate forerunner genes (ITM2B, LPAR6, MLNR, CAB39L, and ARL11) mapping near RB1. Two of these genes, LPAR6 and CAB39L, are preferentially downregulated in the luminal and basal subtypes of bladder cancer, respectively. Their loss of function dysregulates urothelial differentiation, sensitizing the urothelium to N-butyl-N-(4-hydroxybutyl)nitrosamine-induced cancers, which recapitulate the luminal and basal subtypes of human bladder cancer.


Assuntos
Carcinogênese , Diferenciação Celular , Neoplasias da Bexiga Urinária , Urotélio , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinogênese/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos C57BL , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Urotélio/patologia , Urotélio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA