Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aging Dis ; 14(6): 2303-2316, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199586

RESUMO

Emerging evidence shows that the microRNA-141-3p is involved in various age-related pathologies. Previously, our group and others reported elevated levels of miR-141-3p in several tissues and organs with age. Here, we inhibited the expression of miR-141-3p using antagomir (Anti-miR-141-3p) in aged mice and explored its role in healthy aging. We analyzed serum (cytokine profiling), spleen (immune profiling), and overall musculoskeletal phenotype. We found decreased levels of pro-inflammatory cytokines (such as TNF-α, IL-1ß, IFN-γ) in serum with Anti-miR-141-3p treatment. The flow-cytometry analysis on splenocytes revealed decreased M1 (pro-inflammatory) and increased M2 (anti-inflammatory) populations. We also found improved bone microstructure and muscle fiber size with Anti-miR-141-3p treatment. Molecular analysis revealed that miR-141-3p regulates the expression of AU-rich RNA-binding factor 1 (AUF1) and promotes senescence (p21, p16) and pro-inflammatory (TNF-α, IL-1ß, IFN-γ) environment whereas inhibiting miR-141-3p prevents these effects. Furthermore, we demonstrated that the expression of FOXO-1 transcription factor was reduced with Anti-miR-141-3p and elevated with silencing of AUF1 (siRNA-AUF1), suggesting crosstalk between miR-141-3p and FOXO-1. Overall, our proof-of-concept study demonstrates that inhibiting miR-141-3p could be a potential strategy to improve immune, bone, and muscle health with age.

2.
Cells ; 12(4)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36831224

RESUMO

Ischemia-reperfusion (I/R) injury is a complication impacting multiple organs and tissues in clinical conditions ranging from peripheral arterial disease to musculoskeletal trauma and myocardial infarction. Stem cell-derived extracellular vesicles (EVs) may represent one therapeutic resource for preventing the tissue damage associated with I/R injury. Here we tested the hypothesis that lyophilized extracellular vesicles derived from adipose stem cells could serve as an "off-the-shelf" treatment modality for I/R injury in a mouse hindlimb ischemia model. Ischemia was induced for 90 min using a rubber band tourniquet and extracellular vesicles (0, 50, or 100 µg) administered via tail vein injection immediately prior to reperfusion. Perfusion was measured prior to, during, and after ischemia using laser Doppler imaging. Serum and tissue were collected 24 h after reperfusion. Mass spectrometry (MS)-based proteomics was used to characterize the EV cargo and proteins from the ischemic and non-ischemic hindlimb. Inflammatory cytokines were measured in muscle and serum using a multiplex array. Results indicate that EVs significantly increase reperfusion and significantly increase expression of the anti-inflammatory factor annexin a1 in skeletal muscle; however, the increased reperfusion was also associated with a marked decrease in muscle structural proteins such as dystrophin, plectin, and obscurin. Circulating inflammatory cytokines TNF-alpha and IL-6 were increased with EV treatment, and serum TNF-alpha showed a significant, positive correlation with reperfusion level. These findings suggest that, while EVs may enhance reperfusion, the increased reperfusion can negatively impact muscle tissue and possibly remote organs. Alternative approaches, such as targeting mitochondrial permeability, may be more effective at mitigating I/R injury.


Assuntos
Vesículas Extracelulares , Traumatismo por Reperfusão , Camundongos , Animais , Proteínas Musculares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Isquemia/metabolismo , Reperfusão , Membro Posterior/irrigação sanguínea , Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Vesículas Extracelulares/metabolismo
3.
Physiol Genomics ; 54(8): 296-304, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759450

RESUMO

Fibro-adipogenic progenitor cells (FAPs) are a population of stem cells in skeletal muscle that play multiple roles in muscle repair and regeneration through their complex secretome; however, it is not well understood how the FAP secretome is altered with muscle disuse atrophy. Previous work suggests that the inflammatory cytokine IL-1ß is increased in FAPs with disuse and denervation. Inflammasome activation and IL-1ß secretion are also known to stimulate the release of extracellular vesicles (EVs). Here, we examined the microRNA (miRNA) cargo of FAP-derived, platelet-derived growth factor receptor A (PDGFRα+) EVs from hindlimb muscles of wild-type and IL-1ß KO mice after 14 days of single-hindlimb immobilization. Hindlimb muscles were isolated from mice following the immobilization period, and PDGFRα+ extracellular vesicles were isolated using size-exclusion chromatography and immunoprecipitation. Microarrays were performed to detect changes in miRNAs with unloading and IL-1ß deficiency. Results indicate that the PDGFRα+, FAP-derived EVs show a significant increase in miRNAs, such as miR-let-7c, miR-let-7b, miR-181a, and miR-124. These miRNAs have previously been demonstrated to play important roles in cellular senescence and muscle atrophy. Furthermore, the expression of these same miRNAs was not significantly altered in FAP-derived EVs isolated from the immobilized IL-1ß KO. These data suggest that disuse-related activation of IL-1ß can mediate the miRNA cargo of FAP-derived EVs, contributing directly to the release of senescence- and atrophy-related miRNAs. Therapies targeting FAPs in settings associated with muscle disuse atrophy may therefore have the potential to preserve muscle function and enhance muscle recovery.


Assuntos
Vesículas Extracelulares , Interleucina-1beta/metabolismo , MicroRNAs , Transtornos Musculares Atróficos , Animais , Vesículas Extracelulares/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células-Tronco/metabolismo
4.
Sci Rep ; 11(1): 6152, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731782

RESUMO

Acute ischemia-reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O2 and 5% CO2) for 6 h. Cells were treated with NIM-811 (0-20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia-reperfusion injury.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Feminino , Humanos , Masculino , Camundongos , Músculo Esquelético/patologia , Mioblastos Esqueléticos/patologia , Cultura Primária de Células
5.
Front Cell Dev Biol ; 9: 790437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047502

RESUMO

Loss of muscle mass and strength contributes to decreased independence and an increased risk for morbidity and mortality. A better understanding of the cellular and molecular mechanisms underlying muscle atrophy therefore has significant clinical and therapeutic implications. Fibro-adipogenic progenitors (FAPs) are a skeletal muscle resident stem cell population that have recently been shown to play vital roles in muscle regeneration and muscle hypertrophy; however, the role that these cells play in muscle disuse atrophy is not well understood. We investigated the role of FAPs in disuse atrophy in vivo utilizing a 2-week single hindlimb immobilization model. RNA-seq was performed on FAPs isolated from the immobilized and non-immobilized limb. The RNAseq data show that IL-1ß is significantly upregulated in FAPs following 2 weeks of immobilization, which we confirmed using droplet-digital PCR (ddPCR). We further validated the RNA-seq and ddPCR data from muscle in situ using RNAscope technology. IL-1ß is recognized as a key component of the senescence-associated secretory phenotype, or SASP. We then tested the hypothesis that FAPs from the immobilized limb would show elevated senescence measured by cyclin-dependent kinase inhibitor 2A (Cdkn2a) expression as a senescence marker. The ddPCR and RNAscope data both revealed increased Cdkn2a expression in FAPs with immobilization. These data suggest that the gene expression profile of FAPs is significantly altered with disuse, and that disuse itself may drive senescence in FAPs further contributing to muscle atrophy.

6.
Front Physiol ; 12: 742004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126169

RESUMO

Long non-coding RNAs (lncRNAs) are thought to function as "sponges" for microRNAs, but a role for such competing endogenous RNAs (ceRNAs) in muscle aging is not well understood. We therefore examined in skeletal muscles of young (4-6 months) and aged (22-24) male and female mice the expression of lncRNA MALAT1, which is predicted in silico to bind the senescence-associated microRNA miR-34a-5p. Results indicate a significant decrease in lncRNA MALAT1 expression in mouse skeletal muscle with age that coincides with an age-related increase in miR-34a-5p expression. In vitro studies using mouse C2C12 myoblasts demonstrate that MALAT1 silencing using siRNA increases miR-34a expression, consistent with a role for MALAT1 as an inhibitor of miR-34a-5p activity. Levels of reactive oxygen species (ROS) are known to increase in muscle with age, and so we treated C2C12 cells with hydrogen peroxide (10 and 100 µM) to examine changes in MALAT1 expression. MALAT1 expression decreased significantly with H2O2 treatment, but this effect was attenuated with p53 siRNA. Finally, miR-34a-5p is implicated in tissue fibrosis, and so we assessed the expression of TGF-ß1 after MALAT1 silencing. MALAT1 siRNA significantly increased the expression of TGF-ß1 in C2C12 cells. These findings suggest that age-related fibrosis and muscle atrophy mediated by ROS may result at least in part from an increase in miR-34a bioavailability resulting from a decline in miR-34a "sponging" due to ceRNA MALAT1 depletion. Crosstalk between MALAT1 and miR-34a may therefore represent a therapeutic target for improving muscle function with aging.

7.
Oxid Med Cell Longev ; 2019: 9894238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737181

RESUMO

The cellular and molecular mechanisms underlying loss of muscle mass with age (sarcopenia) are not well-understood; however, heterochronic parabiosis experiments show that circulating factors are likely to play a role. Kynurenine (KYN) is a circulating tryptophan metabolite that is known to increase with age and is a ligand of the aryl hydrocarbon receptor (Ahr). Here, we tested the hypothesis that KYN activation of Ahr plays a role in muscle loss with aging. Results indicate that KYN treatment of mouse and human myoblasts increased levels of reactive oxygen species (ROS) 2-fold and KYN treatment in vivo reduced muscle size and strength and increased muscle lipid peroxidation in young mice. PCR array data indicate that muscle fiber size reduction with KYN treatment reduces protein synthesis markers whereas ubiquitin ligase gene expression is not significantly increased. KYN is generated by the enzyme indoleamine 2,3-dioxygenase (IDO), and aged mice treated with the IDO inhibitor 1-methyl-D-tryptophan showed an increase in muscle fiber size and muscle strength. Small-molecule inhibition of Ahr in vitro, and Ahr knockout in vivo, did not prevent KYN-induced increases in ROS, suggesting that KYN can directly increase ROS independent of Ahr activation. Protein analysis identified very long-chain acyl-CoA dehydrogenase as a factor activated by KYN that may increase ROS and lipid peroxidation. Our data suggest that IDO inhibition may represent a novel therapeutic approach for the prevention of sarcopenia and possibly other age-associated conditions associated with KYN accumulation such as bone loss and neurodegeneration.


Assuntos
Envelhecimento/fisiologia , Cinurenina/metabolismo , Peroxidação de Lipídeos/fisiologia , Atrofia Muscular/metabolismo , Mioblastos/metabolismo , Sarcopenia/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sarcopenia/patologia , Triptofano/metabolismo
8.
J Gerontol A Biol Sci Med Sci ; 74(9): 1368-1374, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31505568

RESUMO

Stromal cell-derived factor-1 (SDF-1 or CXCL12) is a cytokine secreted by cells including bone marrow stromal cells (BMSCs). SDF-1 plays a vital role in BMSC migration, survival, and differentiation. Our group previously reported the role of SDF-1 in osteogenic differentiation in vitro and bone formation in vivo; however, our understanding of the post-transcriptional regulatory mechanism of SDF-1 remains poor. MicroRNAs are small noncoding RNAs that post-transcriptionally regulate the messenger RNAs (mRNAs) of protein-coding genes. In this study, we aimed to investigate the impact of miR-141-3p on SDF-1 expression in BMSCs and its importance in the aging bone marrow (BM) microenvironment. Our data demonstrated that murine and human BMSCs expressed miR-141-3p that repressed SDF-1 gene expression at the functional level (luciferase reporter assay) by targeting the 3'-untranslated region of mRNA. We also found that transfection of miR-141-3p decreased osteogenic markers in human BMSCs. Our results demonstrate that miR-141-3p expression increases with age, while SDF-1 decreases in both the human and mouse BM niche. Taken together, these results support that miR-141-3p is a novel regulator of SDF-1 in bone cells and plays an important role in the age-dependent pathophysiology of murine and human BM niche.


Assuntos
Quimiocina CXCL12/biossíntese , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/fisiologia , Fatores Etários , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL
9.
Oxid Med Cell Longev ; 2019: 1704650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205583

RESUMO

Aging is associated with reduced muscle mass (sarcopenia) and poor bone quality (osteoporosis), which together increase the incidence of falls and bone fractures. It is widely appreciated that aging triggers systemic oxidative stress, which can impair myoblast cell survival and differentiation. We previously reported that arginase plays an important role in oxidative stress-dependent bone loss. We hypothesized that arginase activity is dysregulated with aging in muscles and may be involved in muscle pathophysiology. To investigate this, we analyzed arginase activity and its expression in skeletal muscles of young and aged mice. We found that arginase activity and arginase 1 expression were significantly elevated in aged muscles. We also demonstrated that SOD2, GPx1, and NOX2 increased with age in skeletal muscle. Most importantly, we also demonstrated elevated levels of peroxynitrite formation and uncoupling of eNOS in aged muscles. Our in vitro studies using C2C12 myoblasts showed that the oxidative stress treatment increased arginase activity, decreased cell survival, and increased apoptotic markers. These effects were reversed by treatment with an arginase inhibitor, 2(S)-amino-6-boronohexanoic acid (ABH). Our study provides strong evidence that L-arginine metabolism is altered in aged muscle and that arginase inhibition could be used as a novel therapeutic target for age-related muscle complications.


Assuntos
Envelhecimento , Arginase/metabolismo , Arginina/metabolismo , Músculo Esquelético/patologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Animais , Arginase/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
10.
Aging (Albany NY) ; 11(6): 1791-1803, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30910993

RESUMO

Extracellular vesicles (EVs) are known to play important roles in cell-cell communication. Here we investigated the role of muscle-derived EVs and their microRNAs in the loss of bone stem cell populations with age. Aging in male and female C57BL6 mice was associated with a significant increase in expression of the senescence-associated microRNA miR-34a-5p (miR-34a) in skeletal muscle and in serum -derived EVs. Muscle-derived, alpha-sarcoglycan positive, EVs isolated from serum samples also showed a significant increase in miR-34a with age. EVs were isolated from conditioned medium of C2C12 mouse myoblasts and primary human myotubes after cells were treated with hydrogen peroxide to simulate oxidative stress. These EVs were shown to have elevated levels of miR-34a, and these EVs decreased viability of bone marrow mesenchymal (stromal) cells (BMSCs) and increased BMSC senescence. A lentiviral vector system was used to overexpress miR-34a in C2C12 cells, and EVs isolated from these transfected cells were observed to home to bone in vivo and to induce senescence and decrease Sirt1 expression of primary bone marrow cells ex vivo. These findings suggest that aged skeletal muscle is a potential source of circulating, senescence-associated EVs that may directly impact stem cell populations in tissues such as bone via their microRNA cargo.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Envelhecimento/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia
11.
Cells ; 8(1)2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658394

RESUMO

Traumatic brain injury (TBI) is a major source of worldwide morbidity and mortality. Patients suffering from TBI exhibit a higher susceptibility to bone loss and an increased rate of bone fractures; however, the underlying mechanisms remain poorly defined. Herein, we observed significantly lower bone quality and elevated levels of inflammation in bone and bone marrow niche after controlled cortical impact-induced TBI in in vivo CD-1 mice. Further, we identified dysregulated NF-κB signaling, an established mediator of osteoclast differentiation and bone loss, within the bone marrow niche of TBI mice. Ex vivo studies revealed increased osteoclast differentiation in bone marrow-derived cells from TBI mice, as compared to sham injured mice. We also found bone marrow derived extracellular vesicles (EVs) from TBI mice enhanced the colony forming ability and osteoclast differentiation efficacy and activated NF-κB signaling genes in bone marrow-derived cells. Additionally, we showed that miRNA-1224 up-regulated in bone marrow-derived EVs cargo of TBI. Taken together, we provide evidence that TBI-induced inflammatory stress on bone and the bone marrow niche may activate NF-κB leading to accelerated bone loss. Targeted inhibition of these signaling pathways may reverse TBI-induced bone loss and reduce fracture rates.


Assuntos
Medula Óssea/metabolismo , Reabsorção Óssea/etiologia , Reabsorção Óssea/patologia , Lesões Encefálicas Traumáticas/complicações , Diferenciação Celular , Vesículas Extracelulares/metabolismo , Osteoclastos/citologia , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/ultraestrutura , Fêmur/diagnóstico por imagem , Fêmur/patologia , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Osteogênese , Transdução de Sinais , Microtomografia por Raio-X
12.
Cells ; 8(1)2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634626

RESUMO

Extracellular vesicles (EVs), including exosomes and microvesicles, function in cell-to-cell communication through delivery of proteins, lipids and microRNAs to target cells via endocytosis and membrane fusion. These vesicles are enriched in ceramide, a sphingolipid associated with the promotion of cell senescence and apoptosis. We investigated the ceramide profile of serum exosomes from young (24⁻40 yrs.) and older (75⁻90 yrs.) women and young (6⁻10 yrs.) and older (25⁻30 yrs.) rhesus macaques to define the role of circulating ceramides in the aging process. EVs were isolated using size-exclusion chromatography. Proteomic analysis was used to validate known exosome markers from Exocarta and nanoparticle tracking analysis used to characterize particle size and concentration. Specific ceramide species were identified with lipidomic analysis. Results show a significant increase in the average amount of C24:1 ceramide in EVs from older women (15.4 pmol/sample) compared to those from younger women (3.8 pmol/sample). Results were similar in non-human primate serum samples with increased amounts of C24:1 ceramide (9.3 pmol/sample) in older monkeys compared to the younger monkeys (1.8 pmol/sample). In vitro studies showed that primary bone-derived mesenchymal stem cells (BMSCs) readily endocytose serum EVs, and serum EVs loaded with C24:1 ceramide can induce BMSC senescence. Elevated ceramide levels have been associated with poor cardiovascular health and memory impairment in older adults. Our data suggest that circulating EVs carrying C24:1 ceramide may contribute directly to cell non-autonomous aging.


Assuntos
Envelhecimento/metabolismo , Senescência Celular/efeitos dos fármacos , Ceramidas , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/sangue , Células Cultivadas , Ceramidas/sangue , Ceramidas/farmacologia , Feminino , Humanos , Macaca mulatta , Proteínas de Membrana/sangue , Esfingomielina Fosfodiesterase/sangue , Esfingosina N-Aciltransferase/sangue , Proteínas Supressoras de Tumor/sangue , Adulto Jovem
13.
Nutrients ; 10(2)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29419776

RESUMO

MicroRNAs (miRNAs) are small (18-25 nucleotides), noncoding RNAs that have been identified as potential regulators of bone marrow stromal cell (BMSC) proliferation, differentiation, and musculoskeletal development. Vitamin C is known to play a vital role in such types of biological processes through various different mechanisms by altering mRNA expression. We hypothesized that vitamin C mediates these biological processes partially through miRNA regulation. We performed global miRNA expression analysis on human BMSCs following vitamin C treatment using microarrays containing human precursor and mature miRNA probes. Bioinformatics analyses were performed on differentially expressed miRNAs to identify novel target genes and signaling pathways. Our bioinformatics analysis suggested that the miRNAs may regulate multiple stem cell-specific signaling pathways such as cell adhesion molecules (CAMs), fatty acid biosynthesis and hormone signaling pathways. Furthermore, our analysis predicted novel stem cell proliferation and differentiation gene targets. The findings of the present study demonstrate that vitamin C can have positive effects on BMSCs in part by regulating miRNA expression.


Assuntos
Ácido Ascórbico/metabolismo , Células da Medula Óssea/metabolismo , Regulação da Expressão Gênica , MicroRNAs/biossíntese , Modelos Biológicos , Células Estromais/metabolismo , Adipogenia , Adulto , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Biópsia por Agulha , Células da Medula Óssea/citologia , Células Cultivadas , Análise por Conglomerados , Biologia Computacional , Ontologia Genética , Humanos , Análise em Microsséries , Concentração Osmolar , Osteogênese , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/citologia
14.
Sci Rep ; 7(1): 2029, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515465

RESUMO

The pathogenesis of osteoarthritis (OA) is poorly understood, and therapeutic approaches are limited to preventing progression of the disease. Recent studies have shown that exosomes play a vital role in cell-to-cell communication, and pathogenesis of many age-related diseases. Molecular profiling of synovial fluid derived exosomal miRNAs may increase our understanding of OA progression and may lead to the discovery of novel biomarkers and therapeutic targets. In this article we report the first characterization of exosomes miRNAs from human synovial fluid. The synovial fluid exosomes share similar characteristics (size, surface marker, miRNA content) with previously described exosomes in other body fluids. MiRNA microarray analysis showed OA specific exosomal miRNA of male and female OA. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified gender-specific target genes/signaling pathways. These pathway analyses showed that female OA specific miRNAs are estrogen responsive and target TLR (toll-like receptor) signaling pathways. Furthermore, articular chondrocytes treated with OA derived extracellular vesicles had decreased expression of anabolic genes and elevated expression of catabolic and inflammatory genes. In conclusion, synovial fluid exosomal miRNA content is altered in patients with OA and these changes are gender specific.


Assuntos
Exossomos/metabolismo , Expressão Gênica , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo , Sobrevivência Celular , Condrócitos/metabolismo , Biologia Computacional/métodos , Endocitose , Estrogênios/metabolismo , Exossomos/ultraestrutura , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Anotação de Sequência Molecular , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA