Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(3): 76, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267719

RESUMO

Two metallo-ß-lactamase-producing Klebsiella pneumoniae (HA30 and HA31) were isolated in a hospital in Argentina during 2018. K. pneumoniae HA30 was isolated from a rectal swab during the epidemiological surveillance for carbapenemase-producing strains, while K. pneumoniae HA31 was collected from the same patient 4 days after hospitalization. The aim of the present study was to identify the clonal relationships and resistome of these two NDM-producing K. pneumoniae strains isolated from a patient with a fatal outcome. Whole-genome sequencing (WGS) was performed using Illumina MiSeq-I, and subsequent analysis involved genome assembly, annotation, antibiotic resistance gene identification, multilocus sequence typing (MLST), and plasmid characterization using bioinformatics tools. Conjugation assays to E. coli J53 was conducted as previously described. K. pneumoniae HA30 exhibited extensively drug-resistant phenotype, while HA31 was multidrug-resistant as defined by Magiorakos et al., including both resistance to carbapenems, aminoglycosides and ciprofloxacin with blaNDM-5, blaCTX-M-15 and rmtB genes found in both strains. MLST analysis showed that both strains belonged to ST11, differing by only 4 cgSNPs, indicating that K. pneumoniae HA30 and HA31 were the same strain. Conjugation assays revealed that K. pneumoniae HA31 strain possessed a transferable plasmid to E. coli J53. Bioinformatics studies identified that the same strain colonizing an inpatient during hospital admission subsequently caused the infection leading to a fatal outcome, being the first report of blaNDM-5, rmtB and blaCTX-M-15 genes in a K. pneumoniae ST11 strain from Latin America. Our results also highlighted the importance of focusing on epidemiological surveillance programs.


Assuntos
Escherichia coli , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Genômica , Antibacterianos/farmacologia , beta-Lactamases/genética
2.
Microb Drug Resist ; 23(3): 351-358, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27391421

RESUMO

Domain V of 23S rRNA, gyrA and gyrB Quinolones Resistance-Determining Region (QRDR), and pbp-1A gene point mutations were investigated in Helicobacter pylori-resistant isolates from three centres of Buenos Aires. Minimal inhibitory concentrations (MICs) were performed in 197 isolates from 52 H. pylori-positive naive patients by agar dilution method. Point mutations were achieved by amplification and sequencing of the target genes, and their association with resistance was determined by natural transformation assays. Resistance rates were as follows: metronidazole 28.8%, clarithromycin (CLA) 26.9%, levofloxacin (LEV) 32.7%, and amoxicillin (AMX) 7.6%. Nearly one-third of patients carried multidrug-resistant isolates. A2143G or A2142G in domain V of 23S-rRNA was found in all isolates showing high level of resistance to CLA (MIC >2 mg/L), accounting for 76.0% (38/50) of those with the resistant phenotype. The mutations A2267G or T1861C carried by 8/12 isolates with MIC 1-2 mg/L (low level) did not confer resistance by transformation. Substitutions at GyrA position 87 or 91, mainly N87K and D91G, were found in 92.8% (52/56) of the LEV-resistant isolates: 48 isolates with MIC 4-64 mg/L and 4/8 isolates with MIC 2 mg/L. The remaining four harboured K133N, also present in susceptible isolates. None of the substitutions in GyrB demonstrated to confer resistance. Transformation proved that PBP-1A N562Y and/or T556S substitutions confer the AMX resistance in our isolates, showing an additive effect. In conclusion, the usually reported mutations related to CLA, LEV, and AMX resistance were found in our isolates. However, low-level CLA resistance seems not to be due to mutations in Domain V of 23S rRNA gene.


Assuntos
Amoxicilina/farmacologia , Antibacterianos/farmacologia , Claritromicina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Helicobacter pylori/genética , Levofloxacino/farmacologia , Mutação Puntual/genética , Argentina , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana/métodos , RNA Ribossômico 23S/genética
3.
PLoS One ; 10(8): e0136070, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284933

RESUMO

Arginine-Serine (RS) domain-containing proteins are RNA binding proteins with multiple functions in RNA metabolism. In mammalian cells this group of proteins is also implicated in regulation and coordination of cell cycle and apoptosis. In trypanosomes, an early branching group within the eukaryotic lineage, this group of proteins is represented by 3 members, two of them are SR proteins and have been recently shown to be involved in rRNA processing as well as in pre-mRNA splicing and stability. Here we report our findings on the 3rd member, the SR-related protein TbRRM1. In the present study, we showed that TbRRM1 ablation by RNA-interference in T. brucei procyclic cells leads to cell-cycle block, abnormal cell elongation compatible with the nozzle phenotype and cell death by an apoptosis-like mechanism. Our results expand the role of the trypanosomal RS-domain containing proteins in key cellular processes such as cell cycle and apoptosis-like death, roles also carried out by the mammalian SR proteins, and thus suggesting a conserved function in this phylogenetically conserved protein family.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase/patologia , Animais , Arginina/metabolismo , Northern Blotting , Western Blotting , Proliferação de Células , Células Cultivadas , Imunofluorescência , Potencial da Membrana Mitocondrial , Proteínas de Protozoários/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina/metabolismo , Tripanossomíase/parasitologia
4.
J Biol Chem ; 287(23): 19058-69, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22500021

RESUMO

Trypanosoma cruzi, the agent of Chagas disease, does not seem to control gene expression through regulation of transcription initiation and makes use of post-transcriptional mechanisms. We report here a 43-nt U-rich RNA element located in the 3'-untranslated region (3'-UTR) of a large number of T. cruzi mRNAs that is important for mRNA abundance in the intracellular amastigote stage of the parasite. Whole genome scan analysis, differential display RT-PCR, Northern blot, and RT-PCR analyses were used to determine the transcript levels of more than 900 U-rich-containing mRNAs of large gene families as well as single and low copy number genes. Our results indicate that the 43-nt U-rich mRNA element is preferentially present in amastigotes. The cis-element of a protein kinase 3'-UTR but not its mutated version promoted the expression of the green fluorescent protein reporter gene in amastigotes. The regulatory cis-element, but not its mutated version, was also shown to interact with the trypanosome-specific RNA-binding protein (RBP) TcUBP1 but not with other related RBPs. Co-immunoprecipitation experiments of TcUBP1-containing ribonucleoprotein complexes formed in vivo validated the interaction with representative endogenous RNAs having the element. These results suggest that this 43-nt U-rich element together with other yet unidentified sequences might be involved in the modulation of abundance and/or translation of subsets of transcripts in the amastigote stage.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Genoma de Protozoário/fisiologia , RNA de Protozoário/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trypanosoma cruzi/fisiologia , RNA de Protozoário/genética , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA