Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297141

RESUMO

This study investigates the stress corrosion cracking (SCC) behavior of type 316L stainless steel (SS316L) produced with sinter-based material extrusion additive manufacturing (AM). Sinter-based material extrusion AM produces SS316L with microstructures and mechanical properties comparable to its wrought counterpart in the annealed condition. However, despite extensive research on SCC of SS316L, little is known about the SCC of sinter-based AM SS316L. This study focuses on the influence of sintered microstructures on SCC initiation and crack-branching susceptibility. Custom-made C-rings were exposed to different stress levels in acidic chloride solutions at various temperatures. Solution-annealed (SA) and cold-drawn (CD) wrought SS316L were also tested to understand the SCC behavior of SS316L better. Results showed that sinter-based AM SS316L was more susceptible to SCC initiation than SA wrought SS316L but more resistant than CD wrought SS316L, as determined by the crack initiation time. Sinter-based AM SS316L showed a noticeably lower tendency for crack-branching than both wrought SS316L counterparts. The investigation was supported by comprehensive pre- and post-test microanalysis using light optical microscopy, scanning electron microscopy, electron backscatter diffraction, and micro-computed tomography.

2.
BMC Chem ; 13(1): 5, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31384755

RESUMO

Laser Engineered Net Shaping (LENS™) was used to produce a compositionally graded Ti-xMo (0 ≤ x ≤ 12 wt %) specimen and nine Ti-15Mo (fixed composition) specimens at different energy densities to understand the composition-processing-microstructure relationships operating using additive manufacturing. The gradient was used to evaluate the effect of composition on the prior-beta grain size. The specimens deposited using different energy densities were used to assess the processing parameters influence the microstructure evolutions. The gradient specimen did not show beta grain size reduction with the Mo content. The analysis from the perspective of the two grain refinement mechanisms based on a model known as the Easton & St. John, which was originally developed for aluminum and magnesium alloys shows the lower bound in prior-beta grain refinement with the Ti-Mo system. The low growth restriction factor for the Ti-Mo system of Q = 6,5C0 explains the unsuccessful refinement from the solute-based mechanism. The energy density and the grain size are proportional according to the results of the nine fixed composition specimens at different energy densities. More energy absorption from the material represents bigger molten pools, which in turn relates to lower cooling rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA