Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Phytomedicine ; 128: 155493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484626

RESUMO

BACKGROUND: ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE: We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS: Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS: Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS: ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas Inibidoras de Diferenciação , Neoplasias Pulmonares , Proteínas de Neoplasias , Silibina , Silibina/farmacologia , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Silimarina/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Morfogenética Óssea 6 , Silybum marianum/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Feminino
2.
Clin Nutr ; 43(1): 246-258, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101315

RESUMO

BACKGROUND: The relationship between lipid mediators and severe obesity remains unclear. Our study investigates the impact of severe obesity on plasma concentrations of oxylipins and fatty acids and explores the consequences of weight loss. METHODS: In the clinical trial identifier NCT05554224 study, 116 patients with severe obesity and 63 overweight/obese healthy controls matched for age and sex (≈2:1) provided plasma. To assess the effect of surgically induced weight loss, we requested paired plasma samples from 44 patients undergoing laparoscopic sleeve gastrectomy one year after the procedure. Oxylipins were measured using ultra-high-pressure liquid chromatography coupled to a triple quadrupole mass spectrometer via semi-targeted lipidomics. Cytokines and markers of interorgan crosstalk were measured using enzyme-linked immunosorbent assays. RESULTS: We observed significantly elevated levels of circulating fatty acids and oxylipins in patients with severe obesity compared to their metabolically healthier overweight/obese counterparts. Our findings indicated that sex and liver disease were not confounding factors, but we observed weak correlations in plasma with circulating adipokines, suggesting the influence of adipose tissue. Importantly, while weight loss restored the balance in circulating fatty acids, it did not fully normalize the oxylipin profile. Before surgery, oxylipins derived from lipoxygenase activity, such as 12-HETE, 11-HDoHE, 14-HDoHE, and 12-HEPE, were predominant. However, one year following laparoscopic sleeve gastrectomy, we observed a complex shift in the oxylipin profile, favoring species from the cyclooxygenase pathway, particularly proinflammatory prostanoids like TXB2, PGE2, PGD2, and 12-HHTrE. This transformation appears to be linked to a reduction in adiposity, underscoring the role of lipid turnover in the development of metabolic disorders associated with severe obesity. CONCLUSIONS: Despite the reduction in fatty acid levels associated with weight loss, the oxylipin profile shifts towards a predominance of more proinflammatory species. These observations underscore the significance of seeking mechanistic approaches to address severe obesity and emphasize the importance of closely monitoring the metabolic adaptations after weight loss.


Assuntos
Obesidade Mórbida , Oxilipinas , Humanos , Ácidos Graxos , Obesidade , Obesidade Mórbida/cirurgia , Sobrepeso , Redução de Peso
3.
Mol Oncol ; 18(3): 479-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158755

RESUMO

The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Medicina de Precisão , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/uso terapêutico , Morte Celular , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/genética
5.
Cancers (Basel) ; 14(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36551587

RESUMO

Epithelial-to-mesenchymal transition (EMT) may drive the escape of ALK-rearranged non-small-cell lung cancer (NSCLC) tumors from ALK-tyrosine kinase inhibitors (TKIs). We investigated whether first-generation ALK-TKI therapy-induced EMT promotes cross-resistance to new-generation ALK-TKIs and whether this could be circumvented by the flavonolignan silibinin, an EMT inhibitor. ALK-rearranged NSCLC cells acquiring a bona fide EMT phenotype upon chronic exposure to the first-generation ALK-TKI crizotinib exhibited increased resistance to second-generation brigatinib and were fully refractory to third-generation lorlatinib. Such cross-resistance to new-generation ALK-TKIs, which was partially recapitulated upon chronic TGFß stimulation, was less pronounced in ALK-rearranged NSCLC cells solely acquiring a partial/hybrid E/M transition state. Silibinin overcame EMT-induced resistance to brigatinib and lorlatinib and restored their efficacy involving the transforming growth factor-beta (TGFß)/SMAD signaling pathway. Silibinin deactivated TGFß-regulated SMAD2/3 phosphorylation and suppressed the transcriptional activation of genes under the control of SMAD binding elements. Computational modeling studies and kinase binding assays predicted a targeted inhibitory binding of silibinin to the ATP-binding pocket of TGFß type-1 receptor 1 (TGFBR1) and TGFBR2 but solely at the two-digit micromolar range. A secretome profiling confirmed the ability of silibinin to normalize the augmented release of TGFß into the extracellular fluid of ALK-TKIs-resistant NSCLC cells and reduce constitutive and inducible SMAD2/3 phosphorylation occurring in the presence of ALK-TKIs. In summary, the ab initio plasticity along the EMT spectrum may explain the propensity of ALK-rearranged NSCLC cells to acquire resistance to new-generation ALK-TKIs, a phenomenon that could be abrogated by the silibinin-driven attenuation of the TGFß/SMAD signaling axis in mesenchymal ALK-rearranged NSCLC cells.

6.
Cancers (Basel) ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36551699

RESUMO

Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial-cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. "Upper" and "lower" glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, ß-oxidation substrates including palmitoyl-carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer.

7.
Aging (Albany NY) ; 15(4): 892-897, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36490309

RESUMO

The mitokine MOTS-c is a mitochondrially-encoded "exercise-mimetic peptide" expressed in multiple tissues, particularly skeletal muscles, which can be detected as a circulating hormone in the blood. MOTS-c mechanisms of action (MoA) involve insulin sensitization, enhanced glucose utilization, suppression of mitochondrial respiration, and targeting of the folate-AICAR-AMPK pathway. Although MOTS-c MoA largely overlap those of the anti-diabetic biguanide metformin, the putative regulatory actions of metformin on MOTS-c have not yet been evaluated in detail. Here, we measured circulating MOTS-c in paired baseline and post-treatment sera obtained from HER2-positive breast cancer patients randomized to receive either metformin combined with neoadjuvant chemotherapy and trastuzumab or an equivalent regimen without metformin. We failed to find any significant alteration of circulating MOTS-c -as measured using the commercially available competitive ELISA CEX132Hu- in response to 24 weeks of a neoadjuvant chemotherapy/trastuzumab regimen with or without daily metformin. Changes in circulating MOTS-c levels failed to reach statistical significance when comparing patients achieving pathological complete response (pCR), irrespective of metformin treatment. The inability of metformin to target skeletal muscle, the major tissue for MOTS-c production and secretion, might limit its regulatory effects on circulating MOTS-c. Further studies are needed to definitely elucidate the nature of the interaction between metformin and MOTS-c in cancer and non-cancer patients.


Assuntos
Neoplasias da Mama , Metformina , Feminino , Humanos , Neoplasias da Mama/patologia , Insulina/uso terapêutico , Metformina/farmacologia , Mitocôndrias/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
8.
Nutrients ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079891

RESUMO

Therapy-induced senescence (TIS) is a state of stable proliferative arrest of both normal and neoplastic cells that is triggered by exposure to anticancer treatments. TIS cells acquire a senescence-associated secretory phenotype (SASP), which is pro-inflammatory and actively promotes tumor relapse and adverse side-effects in patients. Here, we hypothesized that TIS cells adapt their scavenging and catabolic ability to overcome the nutritional constraints in their microenvironmental niches. We used a panel of mechanistically-diverse TIS triggers (i.e., bleomycin, doxorubicin, alisertib, and palbociclib) and Biolog Phenotype MicroArrays to identify (among 190 different carbon and nitrogen sources) candidate metabolites that support the survival of TIS cells in limiting nutrient conditions. We provide evidence of distinguishable TIS-associated nutrient consumption profiles involving a core set of shared (e.g., glutamine) and unique (e.g., glucose-1-phosphate, inosine, and uridine) nutritional sources after diverse senescence-inducing interventions. We also observed a trend for an inverse correlation between the intensity of the pro-inflammatory SASP provoked by different TIS agents and diversity of compensatory nutritional niches utilizable by senescent cells. These findings support the detailed exploration of the nutritional niche as a new metabolic dimension to understand and target TIS in cancer.


Assuntos
Senescência Celular , Neoplasias , Doxorrubicina/farmacologia , Humanos , Neoplasias/metabolismo
9.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077379

RESUMO

The third-generation anaplastic lymphoma tyrosine kinase inhibitor (ALK-TKI) lorlatinib has a unique side effect profile that includes hypercholesteremia and hypertriglyceridemia in >80% of lung cancer patients. Here, we tested the hypothesis that lorlatinib might directly promote the accumulation of cholesterol and/or triglycerides in human hepatic cells. We investigated the capacity of the hepatoprotectant silibinin to modify the lipid-modifying activity of lorlatinib. To predict clinically relevant drug−drug interactions if silibinin were used to clinically manage lorlatinib-induced hyperlipidemic effects in hepatic cells, we also explored the capacity of silibinin to interact with and block CYP3A4 activity using in silico computational descriptions and in vitro biochemical assays. A semi-targeted ultrahigh pressure liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-ESI-QTOF-MS/MS)-based lipidomic approach revealed that short-term treatment of hepatic cells with lorlatinib promotes the accumulation of numerous molecular species of cholesteryl esters and triglycerides. Silibinin treatment significantly protected the steady-state lipidome of hepatocytes against the hyperlipidemic actions of lorlatinib. Lipid staining confirmed the ability of lorlatinib to promote neutral lipid overload in hepatocytes upon long-term exposure, which was prevented by co-treatment with silibinin. Computational analyses and cell-free biochemical assays predicted a weak to moderate inhibitory activity of clinically relevant concentrations of silibinin against CYP3A4 when compared with recommended (rosuvastatin) and non-recommended (simvastatin) statins for lorlatinib-associated dyslipidemia. The elevated plasma cholesterol and triglyceride levels in lorlatinib-treated lung cancer patients might involve primary alterations in the hepatic accumulation of lipid intermediates. Silibinin could be clinically explored to reduce the undesirable hyperlipidemic activity of lorlatinib in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Quinase do Linfoma Anaplásico , Carcinoma Pulmonar de Células não Pequenas/patologia , Citocromo P-450 CYP3A , Hepatócitos , Humanos , Lactamas , Lactamas Macrocíclicas/farmacologia , Lipídeos/uso terapêutico , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis , Silibina , Espectrometria de Massas em Tandem , Triglicerídeos/uso terapêutico
10.
J Proteome Res ; 21(11): 2555-2565, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36180971

RESUMO

Advances in metabolomics analysis and data treatment increase the knowledge of complex biological systems. One of the most used methodologies is gas chromatography-mass spectrometry (GC-MS) due to its robustness, high separation efficiency, and reliable peak identification through curated databases. However, methodologies are not standardized, and the derivatization steps in GC-MS can introduce experimental errors and take considerable time, exposing the samples to degradation. Here, we propose the injection-port derivatization (IPD) methodology to increase the throughput in plasma metabolomics analysis by GC-MS. The IPD method was evaluated and optimized for different families of metabolites (organic acids, amino acids, fatty acids, sugars, sugar phosphates, etc.) in terms of residence time, injection-port temperature, and sample/derivatization reagent ratio. Finally, the method's usefulness was validated in a study consisting of a cohort of obese patients with or without nonalcoholic steatohepatitis. Our results show a fast, reproducible, precise, and reliable method for the analysis of biological samples by GC-MS. Raw data are publicly available at MetaboLights with Study Identifier MTBLS5151.


Assuntos
Ácidos , Metabolômica , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Indicadores e Reagentes , Aminoácidos
11.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887177

RESUMO

The surgically induced remission of liver disease represents a model to investigate the signalling processes that trigger the development of nonalcoholic steatohepatitis with the aim of identifying novel therapeutic targets. We recruited patients with severe obesity with or without nonalcoholic steatohepatitis and obtained liver and plasma samples before and after laparoscopic sleeve gastrectomy for immunoblotting, immunocytochemical, metabolomic, transcriptomic and epigenetic analyses. Functional studies were performed in HepG2 cells and primary hepatocytes. Surgery was associated with a decrease in the inflammatory response and revealed the role of mitogen-activated protein kinases. Nonalcoholic steatohepatitis was associated with an increased glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy and affected methylation-related epigenomic remodelling enzymes. Hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. Our results suggest that the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation play a crucial role in the inefficient adaptive responses leading to steatohepatitis in obesity.


Assuntos
Laparoscopia , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Gastrectomia/métodos , Humanos , Ácidos Cetoglutáricos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade Mórbida/cirurgia , Serina-Treonina Quinases TOR
13.
Am J Cancer Res ; 12(5): 2173-2188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693067

RESUMO

The HER3/4 ligand heregulin-ß2 (HRG) is a secreted growth factor that transactivates the ligand-less receptor HER2 to promote aggressive phenotypes in breast cancer. HRG can also localize to the nucleus of breast cancer cells, but both the nuclear translocation mechanism and the physiological role of nuclear HRG remain elusive. Here we show that nucleolin-driven nuclear moonlighting of HRG uncouples its role as a driver of endocrine resistance from its canonical HER network-activating role in breast cancer. Tandem affinity purification coupled to mass spectrometry identified the intracellular transporter nucleolin as a major HRG-binding protein. HRG interacts with nucleolin via a nuclear localization signal motif located at the N-terminal extracellular domain of HRG. Nucleolin interacts with HRG via aspartate/glutamate-rich acidic stretches located at the N-terminal domain of nucleolin. Depletion of nucleolin abolishes HRG nuclear translocation and decreases HRG mRNA and protein expression. Isolated deficiency of nuclear HRG abolishes the HRG-driven endocrine resistance phenotype in vitro and in mouse xenograft models, while preserving its capacity to activate the HRG/HER/MAPK autocrine signaling axis. Conversely, isolated deficiency of secreted HRG to bind HER2/3 receptors does not impair endocrine resistance. The discovery that the functions of dual compartment-resident HRG do not depend on the same effector (i.e., activation of HER2/3 receptors) establishes a new paradigm for the functional and therapeutic relevance of nuclear HRG in breast cancer.

14.
Expert Opin Ther Targets ; 26(5): 427-444, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545806

RESUMO

INTRODUCTION: Brain metastasis (BrM) is a key contributor to morbidity and mortality in breast cancer patients, especially among high-risk epidermal growth factor receptor 2-positive (HER2+) and triple-negative/basal-like molecular subtypes. Optimal management of BrM is focused on characterizing a 'BrM dependency map' to prioritize targetable therapeutic vulnerabilities. AREAS COVERED: We review recent studies addressing the targeting of BrM in the lipid-deprived brain environment, which selects for brain-tropic breast cancer cells capable of cell-autonomously generating fatty acids by upregulating de novo lipogenesis via fatty acid synthase (FASN). Disruption of FASN activity impairs breast cancer growth in the brain, but not extracranially, and mapping of the molecular causes of organ-specific patterns of metastasis has uncovered an enrichment of lipid metabolism signatures in brain metastasizing cells. Targeting SREBP1-the master regulator of lipogenic gene transcription-curtails the ability of breast cancer cells to survive in the brain microenvironment. EXPERT OPINION: Targeting FASN represents a new therapeutic opportunity for patients with breast cancer and BrM. Delivery of brain-permeable FASN inhibitors and identifying strategies to target metabolic plasticity that might compensate for impaired brain FASN activity are two potential roadblocks that may hinder FASN-centered strategies against BrM.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/patologia , Ácido Graxo Sintases/metabolismo , Feminino , Humanos , Lipogênese , Microambiente Tumoral
15.
Am J Cancer Res ; 12(2): 839-851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261806

RESUMO

Triple-negative/basal-like breast cancer (BC) is characterized by aggressive biological features, which allow relapse and metastatic spread to occur more frequently than in hormone receptor-positive (luminal) subtypes. The molecular complexity of triple-negative/basal-like BC poses major challenges for the implementation of targeted therapies, and chemotherapy remains the standard approach at all stages. The matricellular protein cysteine-rich angiogenic inducer 61 (CCN1/CYR61) is associated with aggressive metastatic phenotypes and poor prognosis in BC, but it is unclear whether anti-CCN1 approaches can be successfully applied in triple-negative/basal-like BC. Herein, we first characterized the prevalence of CNN1 expression in matched samples of primary tumors and metastatic relapse in a series of patients with BC. We then investigated the biological effect of CCN1 depletion on tumorigenic traits in vitro and in vivo using archetypal TNBC cell lines. Immunohistochemical analyses of tissue microarrays revealed a significant increase of the highest CCN1 score in recurrent tissues of triple-negative/basal-like BC tumors. Stable silencing of CCN1 in triple-negative/basal-like BC cells promoted a marked reduction in the expression of the CCN1 integrin receptor αvß3, inhibited anchorage-dependent cell growth, reduced clonogenicity, and impaired migration capacity. In an orthotopic model of triple-negative/basal-like BC, silencing of CCN1 notably reduced tumor burden, which was accompanied by decreased microvessel density and concurrent induction of the luminal epithelial marker E-cadherin. Thus, CNN1/CYR61-targeting strategies might have therapeutic value in suppressing the biological aggressiveness of triple-negative/basal-like BC.

16.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269852

RESUMO

Breast cancer is the most prevalent cancer and the leading cause of cancer-related death among women worldwide. Type 2 diabetes-associated metabolic traits such as hyperglycemia, hyperinsulinemia, inflammation, oxidative stress, and obesity are well-known risk factors for breast cancer. The insulin sensitizer metformin, one of the most prescribed oral antidiabetic drugs, has been suggested to function as an antitumoral agent, based on epidemiological and retrospective clinical data as well as preclinical studies showing an antiproliferative effect in cultured breast cancer cells and animal models. These benefits provided a strong rationale to study the effects of metformin in routine clinical care of breast cancer patients. However, the initial enthusiasm was tempered after disappointing results in randomized controlled trials, particularly in the metastatic setting. Here, we revisit the current state of the art of metformin mechanisms of action, critically review past and current metformin-based clinical trials, and briefly discuss future perspectives on how to incorporate metformin into the oncologist's armamentarium for the prevention and treatment of breast cancer.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Metformina , Animais , Neoplasias da Mama/prevenção & controle , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Metformina/farmacologia , Metformina/uso terapêutico , Estudos Retrospectivos
17.
Aging (Albany NY) ; 14(3): 1200-1213, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148282

RESUMO

CCN1/CYR61 promotes angiogenesis, tumor growth and chemoresistance by binding to its integrin receptor αvß3 in endothelial and breast cancer (BC) cells. CCN1 controls also tissue regeneration by engaging its integrin receptor α6ß1 to induce fibroblast senescence. Here, we explored if the ability of CCN1 to drive an endocrine resistance phenotype in estrogen receptor-positive BC cells relies on interactions with either αvß3 or α6ß1. First, we took advantage of site-specific mutagenesis abolishing the CCN1 receptor-binding sites to αvß3 and α6ß1 to determine the integrin partner responsible for CCN1-driven endocrine resistance. Second, we explored a putative nuclear role of CCN1 in regulating ERα-driven transcriptional responses. Retroviral forced expression of a CCN1 derivative with a single amino acid change (D125A) that abrogates binding to αvß3 partially phenocopied the endocrine resistance phenotype induced upon overexpression of wild-type (WT) CCN1. Forced expression of the CCN1 mutant TM, which abrogates all the T1, H1, and H2 binding sites to α6ß1, failed to bypass the estrogen requirement for anchorage-independent growth or to promote resistance to tamoxifen. Wild-type CCN1 promoted estradiol-independent transcriptional activity of ERα and enhanced ERα agonist response to tamoxifen. The α6ß1-binding-defective TM-CCN1 mutant lost the ERα co-activator-like behavior of WT-CCN1. Co-immunoprecipitation assays revealed a direct interaction between endogenous CCN1 and ERα, and in vitro approaches confirmed the ability of recombinant CCN1 to bind ERα. CCN1 signaling via α6ß1, but not via αvß3, drives an endocrine resistance phenotype that involves a direct binding of CCN1 to ERα to regulate its transcriptional activity in ER+ BC cells.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/genética , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Integrina alfa6beta1/metabolismo , Integrinas , Tamoxifeno/farmacologia
18.
Cell Death Dis ; 12(11): 977, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675185

RESUMO

Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.


Assuntos
Ácido Graxo Sintases/metabolismo , Mitocôndrias/metabolismo , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Transfecção
19.
Cancers (Basel) ; 13(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34439322

RESUMO

The anti-angiogenic agent nintedanib has been shown to prolong overall and progression-free survival in patients with advanced non-small-cell lung cancer (NSCLC) who progress after first-line platinum-based chemotherapy and second-line immunotherapy. Here, we explored the molecular basis and the clinical benefit of incorporating the STAT3 inhibitor silibinin-a flavonolignan extracted from milk thistle-into nintedanib-based schedules in advanced NSCLC. First, we assessed the nature of the tumoricidal interaction between nintedanib and silibinin and the underlying relevance of STAT3 activation in a panel of human NSCLC cell lines. NSCLC cells with poorer cytotoxic responses to nintedanib exhibited a persistent, nintedanib-unresponsive activated STAT3 state, and deactivation by co-treatment with silibinin promoted synergistic cytotoxicity. Second, we tested whether silibinin could impact the lysosomal sequestration of nintedanib, a lung cancer cell-intrinsic mechanism of nintedanib resistance. Silibinin partially, but significantly, reduced the massive lysosomal entrapment of nintedanib occurring in nintedanib-refractory NSCLC cells, augmenting the ability of nintedanib to reach its intracellular targets. Third, we conducted a retrospective, observational multicenter study to determine the efficacy of incorporating an oral nutraceutical product containing silibinin in patients with NSCLC receiving a nintedanib/docetaxel combination in second- and further-line settings (n = 59). Overall response rate, defined as the combined rates of complete and partial responses, was significantly higher in the study cohort receiving silibinin supplementation (55%) than in the control cohort (22%, p = 0.011). Silibinin therapy was associated with a significantly longer time to treatment failure in multivariate analysis (hazard ratio 0.43, p = 0.013), despite the lack of overall survival benefit (hazard ratio 0.63, p = 0.190). Molecular mechanisms dictating the cancer cell-intrinsic responsiveness to nintedanib, such as STAT3 activation and lysosomal trapping, are amenable to pharmacological intervention with silibinin. A prospective, powered clinical trial is warranted to confirm the clinical relevance of these findings in patients with advanced NSCLC.

20.
Cancers (Basel) ; 13(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34439169

RESUMO

The anticancer actions of the biguanide metformin involve the functioning of the serine/glycine one-carbon metabolic network. We report that metformin directly and specifically targets the enzymatic activity of mitochondrial serine hydroxymethyltransferase (SHMT2). In vitro competitive binding assays with human recombinant SHMT1 and SHMT2 isoforms revealed that metformin preferentially inhibits SHMT2 activity by a non-catalytic mechanism. Computational docking coupled with molecular dynamics simulation predicted that metformin could occupy the cofactor pyridoxal-5'-phosphate (PLP) cavity and destabilize the formation of catalytically active SHMT2 oligomers. Differential scanning fluorimetry-based biophysical screening confirmed that metformin diminishes the capacity of PLP to promote the conversion of SHMT2 from an inactive, open state to a highly ordered, catalytically competent closed state. CRISPR/Cas9-based disruption of SHMT2, but not of SHMT1, prevented metformin from inhibiting total SHMT activity in cancer cell lines. Isotope tracing studies in SHMT1 knock-out cells confirmed that metformin decreased the SHMT2-channeled serine-to-formate flux and restricted the formate utilization in thymidylate synthesis upon overexpression of the metformin-unresponsive yeast equivalent of mitochondrial complex I (mCI). While maintaining its capacity to inhibit mitochondrial oxidative phosphorylation, metformin lost its cytotoxic and antiproliferative activity in SHMT2-null cancer cells unable to produce energy-rich NADH or FADH2 molecules from tricarboxylic acid cycle (TCA) metabolites. As currently available SHMT2 inhibitors have not yet reached the clinic, our current data establishing the structural and mechanistic bases of metformin as a small-molecule, PLP-competitive inhibitor of the SHMT2 activating oligomerization should benefit future discovery of biguanide skeleton-based novel SHMT2 inhibitors in cancer prevention and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA