Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687758

RESUMO

Within the automotive field, there has been an increasing amount of global attention toward the usability of combustion-independent electric vehicles (EVs). Once considered an overly ambitious and costly venture, the popularity and practicality of EVs have been gradually increasing due to the usage of Li-ion batteries (LIBs). Although the topic of LIBs has been extensively covered, there has not yet been a review that covers the current advancements of LIBs from economic, industrial, and technical perspectives. Specific overviews on aspects such as international policy changes, the implementation of cloud-based systems with deep learning capabilities, and advanced EV-based LIB electrode materials are discussed. Recommendations to address the current challenges in the EV-based LIB market are discussed. Furthermore, suggestions for short-term, medium-term, and long-term goals that the LIB-EV industry should follow are provided to ensure its success in the near future. Based on this literature review, it can be suggested that EV-based LIBs will continue to be a hot topic in the years to come and that there is still a large amount of room for their overall advancement.

2.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049059

RESUMO

Ni-based superalloys have been extensively employed in the aerospace field because of their excellent thermal and mechanical stabilities at high temperatures. With these advantages, many sought to study the influence of fusion-reliant additive manufacturing (AM) techniques for part fabrication/reparation. However, their fabrication presents many problems related to the melting and solidification defects from the feedstock material. Such defects consist of oxidation, inclusions, hot tearing, cracking, and elemental segregation. Consequentially, these defects created a need to discover an AM technique that can mitigate these disadvantages. The cold spray (CS) process is one additive technique that can mitigate these issues. This is largely due to its cost-effectiveness, low temperature, and fast and clean deposition process. However, its effectiveness for Ni-based superalloy fabrication and its structural performance has yet to be determined. This review aimed to fill this knowledge gap in two different ways. First, the advantages of CS technology for Ni-based superalloys compared with thermal-reliant AM techniques are briefly discussed. Second, the processing-structure-property relationships of these deposits are elucidated from microstructural, mechanical, and tribological (from low to high temperatures) perspectives. Considering the porous and brittle defects of CS coatings, a comprehensive review of the post-processing techniques for CS-fabricated Ni superalloys is also introduced. Based on this knowledge, the key structure-property mechanisms of CS Ni superalloys are elucidated with suggestions on how knowledge gaps in the field can be filled in the near future.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296808

RESUMO

In the current study, pure aluminum (Al) powders were cryomilled with and without 3 wt.% pure magnesium (Mg) dopant for varying durations followed by spark plasma sintering (SPS) of powders to prepare bulk components with superior mechanical properties. The crystallite sizes were determined for powders and the bulk components by analyzing the X-ray diffraction (XRD) spectrum. The calculations indicated a reduction in crystallite size with the increase in the cryomilling duration. The results also showed a more significant decrease in the crystallite sizes for Al-3Mg samples than that of pure Al. The changes in the surface morphology of powders were characterized using scanning electron microscopy (SEM). The elemental mapping analysis at nanoscale was carried out using Energy-dispersive X-ray spectroscopy (EDX) in Scanning transmission electron microscopy (STEM). The mechanical properties of the bulk components were assessed using a Vickers Microhardness tester. The test results demonstrated an improvement in the hardness of Mg-doped components. Higher hardness values were also reported with an increase in the cryomilling duration. This article discusses the mechanisms for the reduction in crystallite size for pure Al and Al-3Mg and its subsequent impact on improving mechanical properties.

4.
J Phys Chem B ; 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666944

RESUMO

The wettability of ionic liquids (ILs) is relevant to their use in various applications. However, a mechanistic understanding of how the cation-anion pair affects wettability is still evolving. Here, focusing on phosphonium ILs, wettability was characterized in terms of contact angle using experiments and classical molecular dynamics simulations. Both experiments and simulations showed that the contact angle was affected by the anion and increased as benzoate < salicylate < saccharinate. Further, the simulations showed that the contact angle decreased with increasing cation alkyl chain length for these anions paired with five different tetra-alkyl-phosphonium cations. The trends were explained in terms of adhesive and cohesive energies in the simulations and then correlated to the atomic scale differences between the anions and the cations.

5.
Nanomaterials (Basel) ; 12(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35564124

RESUMO

Ultrasonic nanocrystal surface modification (UNSM) is a unique, mechanical, impact-based surface severe plastic deformation (S2PD) method. This newly developed technique finds diverse applications in the aerospace, automotive, nuclear, biomedical, and chemical industries. The severe plastic deformation (SPD) during UNSM can generate gradient nanostructured surface (GNS) layers with remarkable mechanical properties. This review paper elucidates the current state-of-the-art UNSM technique on a broad range of engineering materials. This review also summarizes the effect of UNSM on different mechanical properties, such as fatigue, wear, and corrosion resistance. Furthermore, the effect of USNM on microstructure development and grain refinement is discussed. Finally, this study explores the applications of the UNSM process.

6.
Materials (Basel) ; 15(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35329636

RESUMO

The application of tribology is not just limited to mechanical components of engineering systems. As a matter of fact, the understanding of friction and wear can be applied to everyday life. One of the important fields is skin tribology, as human skin interacts with various surfaces of different materials. This paper focuses on the friction behavior of the skin when in contact with the fabric and other materials in relative motion. The excessive friction at the fabric-skin interface may lead to discomfort, blistering, chafing, and pressure ulcers especially in athletes who experience higher friction due to rapid movement for an extended period. Other than understanding the fabric properties, it is equally important to understand the structure and properties of the skin to evaluate its function and interaction with the different fabric materials. The identification of the contributing factors of skin friction can help to design suitable fabric materials. An overview of skin functions and the factors that affect the friction on the skin-textile material interface are presented in this review article.

7.
Materials (Basel) ; 15(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35329725

RESUMO

High entropy alloys (HEAs) are the outstanding innovations in materials science and engineering in the early 21st century. HEAs consist of multiple elements with equiatomic or near equiatomic compositions, which exhibit superior mechanical properties, such as wear resistance, fatigue resistance, and corrosion resistance. HEAs are primarily used in structural and functional applications; hence, appropriate welding processes are essential to enhancing the performances and service lives of HEA components. Herein, a comprehensive overview of current state-of-art-of welding techniques for HEAs is elucidated. More specifically, the article discusses the fusion-based welding techniques, such as gas tungsten arc welding (GTAW) and laser beam welding (LBW), and solid-state welding techniques, such as friction stir welding (FSW) and explosive welding (EB), for a broad category of HEAs. In addition, the microstructural features and mechanical properties of HEAs welded using different techniques were explained for a broad spectrum of HEAs. Finally, this review discusses potential challenges in the welding of HEAs.

8.
Nanomaterials (Basel) ; 12(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35159896

RESUMO

The present investigation aims to develop nanocrystalline (NC) pure aluminum powders using cryomilling technique and manufacture bulk components using spark plasma sintering (SPS). The cryomilling was performed on pure Al powders for 2, 6, and 8 h. The cryomilled powders were then consolidated using SPS to produce bulk components. The particle morphology and crystallite size of the powders and the bulk SPS components were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the crystallite size of pure Al powders decreases with increased cryomilling time. The results also showed that the SPS at elevated temperatures resulted in a slight increase in crystallite size, however, the changes were insignificant. The mechanical properties of the bulk components were determined using a Vickers microhardness tester. The hardness of the cryomilled SPS component was determined to be three times higher than that of the unmilled SPS component. The mechanism for the reduction in crystallite size with increasing cryomilling time is discussed. This fundamental study provides an insight into the development of bulk nanomaterials with superior mechanical properties for automotive, aerospace, marine, and nuclear applications.

9.
Materials (Basel) ; 14(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34639985

RESUMO

Lubrication for extreme conditions, such as high temperature, cryogenic temperature, vacuum pressure, high load, high speed, and corrosive environments, is a continuing challenge among tribologists and space engineers due to the inadequate friction and wear properties of liquid lubricants. As a result, tremendous research effort has been put forward to study lubrication mechanisms for various machine elements under challenging conditions over the past two decades. Self-lubricating materials have been most widely used for adequate lubrication in extreme conditions in recent years. This review paper presents state-of-the-art of materials for lubrication in extreme condition applications in aerospace, automotive, and power generation areas. More specifically, solid lubricants dispersed in various matrices for lubrication application were analyzed in-depth under challenging conditions. This study also reports the self-lubricating materials and their lubrication mechanisms. Finally, various applications and challenges of self-lubricating materials were explored.

10.
Materials (Basel) ; 14(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34640214

RESUMO

High-entropy alloys (HEAs) are composed of multiple elements with equimolar or near equimolar composition that have superior mechanical and tribological properties. In this article, we present a review on the tribological performance of HEAs. The tribological properties of different HEAs systems have been evaluated, and it has been found that the wear rate strongly depends on the crystal structure of the phases. The most common structures are face-centered cubic (FCC), body-centered cubic (BCC), and dual-phase (FCC + BCC) alloys due to the high entropy of mixing instead of forming intermetallic phases. In general, HEAs with a BCC structure showed superior hardness and wear properties compared to FCC and FCC + BCC alloys. The lesser wear rate of HEAs with a BCC structure is attributed to the reductions in ductility, resulting in strong but brittle alloys. In addition to the crystal structure, the effect of temperature on the tribological performance of the HEAs is also discussed, which highlights their potential applications for high temperatures. Moreover, various other factors such as grain size, formation of an oxide layer, and wear mechanisms are discussed.

11.
Materials (Basel) ; 14(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34300760

RESUMO

Surface modification methods have been applied to metals and alloys to change the surface integrity, obtain superior mechanical properties, and improve service life irrespective of the field of application. In this review paper, current state-of-the-art of peening techniques are demonstrated. More specifically, classical and advanced shot peening (SP), ultrasonic impact peening (UIP), and laser shock peening (LSP) have been discussed. The effect of these techniques on mechanical properties, such as hardness, wear resistance, fatigue life, surface roughness, and corrosion resistance of various metals and alloys, are discussed. This study also reports the comparisons, advantages, challenges, and potential applications of these processes.

12.
Nanomaterials (Basel) ; 11(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067483

RESUMO

Plasma electrolytic oxidation (PEO) is a novel surface treatment process to produce thick, dense metal oxide coatings, especially on light metals, primarily to improve their wear and corrosion resistance. The coating manufactured from the PEO process is relatively superior to normal anodic oxidation. It is widely employed in the fields of mechanical, petrochemical, and biomedical industries, to name a few. Several investigations have been carried out to study the coating performance developed through the PEO process in the past. This review attempts to summarize and explain some of the fundamental aspects of the PEO process, mechanism of coating formation, the processing conditions that impact the process, the main characteristics of the process, the microstructures evolved in the coating, the mechanical and tribological properties of the coating, and the influence of environmental conditions on the coating process. Recently, the PEO process has also been employed to produce nanocomposite coatings by incorporating nanoparticles in the electrolyte. This review also narrates some of the recent developments in the field of nanocomposite coatings with examples and their applications. Additionally, some of the applications of the PEO coatings have been demonstrated. Moreover, the significance of the PEO process, its current trends, and its scope of future work are highlighted.

13.
Materials (Basel) ; 14(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802337

RESUMO

In the present work, the effect of graphite nanoplatelets (GNPs) on tribological properties of the aluminum (Al), and Al/alumina (Al2O3) composite are studied. GNPs are multilayer graphene sheets which were used as a solid lubricant material. Two sets of composites, Al/GNPs and Al/GNPs/Al2O3 with varying amounts of reinforcements, were synthesized by powder metallurgy that involves cold compaction followed by hot compaction. The hardness of the composites increased with the addition of GNPs and Al2O3. The Al/GNPs composite with 1 wt.% of GNPs (Al/1GNPs) showed a 20% increase in hardness whereas Al/GNPs/ Al2O3 composite with 1 wt.% GNPs and 2 wt.% Al2O3 (Al/1GNPs/2Al2O3) showed 27% increases in hardness compared to the pure Al. The coefficient of friction measured at 20 N was observed to be 22% and 53% lesser for Al/1GNPs and Al/1GNPs/2Al2O3, respectively, compared to corresponding alloys without graphene Al. The X-ray diffraction and scanning electron microscopy analysis revealed the presence of GNPs at the worn surface after the tribology tests. The wear rate was also reduced significantly. In comparison with pure Al, the Al/1GNPs and Al/1GNPs/2Al2O3 composites resulted in 5- and 20-times lesser wear rate, respectively. The addition of Al2O3 caused reduction in wear rate due to higher hardness and load carrying ability, whereas composites with more than 1 wt.% GNPs showed higher wear rate due to lower hardness and higher porosity. The Al/1GNPs/2Al2O3 composite exhibited the least coefficient of friction (0.2-0.25) and wear rate (1 × 10-6-4 × 10-6 mm3/N.m) compared to other GNPs and Al2O3 reinforced Al composites. The worn surfaces were further analyzed to understand the wear mechanism by Raman spectroscopy, transmission electron microscopy, and x-ray diffraction to detect the Al4C3 phase formation, chemical bonding, and defect formation in graphene.

14.
Nanomaterials (Basel) ; 11(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804355

RESUMO

Graphite nanoplatelets (GNPs) as an oil nano additive has gained importance to enhance the lubrication properties of renewable lubricants, such as vegetable oils. Using appropriately processed GNPs is necessary to gain the required tribological advantage. The present study investigated ball-milled GNPs, to understand the effect of GNPs concentration, and applied load on tribological behavior. Pin-on-disk tests were employed, to investigate the tribological performance of the nano-additive oil-based lubricant in the boundary lubrication regime. In order gain an understanding of the lubrication mechanism, Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Raman Spectroscopy were performed for characterization. The study found that there is a critical concentration of GNPs, below and above which a reduced wear rate is not sustained. It is found that the tribological enhancements at the optimum concentration of GNP in boundary lubrication condition are a result of reduced direct metal-metal contact area at the interface. This phenomenon, along with the reduced shear strength of the ball-milled GNPs, is indicated to reduce the formation of asperity junctions at the interface and enhance tribological properties of the nano-additive oil-based lubricant.

15.
Materials (Basel) ; 13(20)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050627

RESUMO

Wear and friction properties of Al2O3 composite reinforced with in-situ formed aluminum borate (9Al2O3·2B2O3) and hexa-boron nitride (h-BN) have been investigated. The initial constituents for the composites were Al2O3, AlN, and H3BO3. The H3BO3 was used as a source of B2O3, where B2O3 reacted with AlN and Al2O3 to form in-situ h-BN and 9Al2O3·2B2O3. Based on the thermodynamic calculation and phase transformation, four different compositions were selected. First, the powders were mixed by ball milling followed by compaction at 10 MPa. The compacted pellets were sintered at 1400 °C in vacuum. The composites were characterized using X-ray diffraction followed by hardness measurement and reciprocating sliding test against alumina and steel balls. The X-ray diffraction results revealed the formation of in situ phases of 9Al2O3·2B2O3 and h-BN that improved the tribological properties. By comparing the tribological performance of different composites, it was found that the hard 9Al2O3·2B2O3 phase maintains the wear resistance of composites, whereas the coefficient of friction is highly dependent on the counter ball. Against alumina ball, the lowest coefficient of friction was observed for the composites with maximum h-BN concentration and minimum aluminum borate concentration, whereas the opposite trend was observed against the steel ball.

16.
Polymers (Basel) ; 11(10)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614875

RESUMO

Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.

17.
Materials (Basel) ; 10(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28956819

RESUMO

Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

18.
Carbohydr Polym ; 147: 282-293, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27178934

RESUMO

The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites.


Assuntos
Celulose/química , Compostos de Epóxi/química , Nanofibras/química , Fenômenos Mecânicos
19.
Philos Trans A Math Phys Eng Sci ; 368(1929): 4851-68, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20855323

RESUMO

As the industrial community moves towards green manufacturing processes, there is an increased demand for multi-functional, environmentally friendly lubricants with enhanced tribological performance. In the present investigation, green (environmentally benign) lubricant combinations were prepared by homogeneously mixing nano- (20 nm), sub-micrometre- (600 nm average size) and micrometre-scale (4 µm average size) boric acid powder additives with canola oil in a vortex generator. As a basis for comparison, lubricants of base canola oil and canola oil mixed with MoS(2) powder (ranging from 0.5 to 10 µm) were also prepared. Friction and wear experiments were carried out on the prepared lubricants using a pin-on-disc apparatus under ambient conditions. Based on the experiments, the nanoscale (20 nm) particle boric acid additive lubricants significantly outperformed all of the other lubricants with respect to frictional and wear performance. In fact, the nanoscale boric acid powder-based lubricants exhibited a wear rate more than an order of magnitude lower than the MoS(2) and larger sized boric acid additive-based lubricants. It was also discovered that the oil mixed with a combination of sub-micrometre- and micrometre-scale boric acid powder additives exhibited better friction and wear performance than the canola oil mixed with sub-micrometre- or micrometre-scale boric acid additives alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA