Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Bioresour Technol ; 402: 130817, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723725

RESUMO

Quorum quenching (QQ) can mitigate biofouling in membrane bioreactors (MBRs) by inhibiting cell-to-cell communication. However, it is difficult to maintain long-term QQ activity. Here, a novel microbial isolator composed of tubular microfiltration membranes was developed to separate QQ bacteria (Rhodococcus sp. BH4) from sludge. The time to reach a transmembrane pressure of 50 kPa was delayed by 69.55 % (p = 0.002, Student's t test) in MBR with QQ microbial isolator (MBR-Q), compared to that in the control MBR (MBR-C) during stable operation. The concentration of proteins in the extracellular polymeric substances of sludge was reduced by 20.61 % in MBR-Q relative to MBR-C. The results of the bacterial community analyses indicated less enrichment of fouling-associated bacteria (e.g., Acinetobacter) but a higher abundance of QQ enzymes in MBR-Q than in MBR-C. This environmentally friendly technique can decrease the cleaning frequency and increase the membrane lifespan, thus improving the sustainability of MBR technology.

2.
NPJ Digit Med ; 7(1): 122, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729977

RESUMO

Sleep disturbances profoundly affect the quality of life in individuals with neurological disorders. Closed-loop deep brain stimulation (DBS) holds promise for alleviating sleep symptoms, however, this technique necessitates automated sleep stage decoding from intracranial signals. We leveraged overnight data from 121 patients with movement disorders (Parkinson's disease, Essential Tremor, Dystonia, Essential Tremor, Huntington's disease, and Tourette's syndrome) in whom synchronized polysomnograms and basal ganglia local field potentials were recorded, to develop a generalized, multi-class, sleep specific decoder - BGOOSE. This generalized model achieved 85% average accuracy across patients and across disease conditions, even in the presence of recordings from different basal ganglia targets. Furthermore, we also investigated the role of electrocorticography on decoding performances and proposed an optimal decoding map, which was shown to facilitate channel selection for optimal model performances. BGOOSE emerges as a powerful tool for generalized sleep decoding, offering exciting potentials for the precision stimulation delivery of DBS and better management of sleep disturbances in movement disorders.

3.
Biol Trace Elem Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619679

RESUMO

In this study, the aim was to investigate the correlation between varying levels of urinary iodine concentration (UIC) in adults and the occurrence of thyroid diseases, with the additional objective of determining the optimal iodine status level for adults. A cross-sectional study was conducted on adults from six areas with different drinking water iodine concentrations (WIC) without eating iodized salt in Heze and Jining counties, Shandong Province, China. A total of 1336 adults were included in this study, and drinking water samples, blood samples, urine samples, thyroid ultrasound, and a questionnaire were collected. UIC, free triiodothyronine (FT3), free thyroid hormone (FT4), thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TgAb) were detected. There were no significant differences in the detection rates of hypothyroidism and thyroid autoimmunity (TAI) among the different median UIC groups (UIC < 100 µg/L, 100-199 µg/L, 200-299 µg/L, ≥ 300 µg/L). However, the detection rates of hypothyroidism were higher in the UIC < 100 µg/L group (16.67%) and the UIC ≥ 300 µg/L group (16.51%) compared to the other groups. The detection rate of TAI increased as UIC levels increased. The detection rate of thyroid nodule (TN) in the UIC < 100 µg/L group was significantly higher than that in the UIC 200-299 µg/L UIC group (χ2 = 10.814, P = 0.001). After adjusting confounding factors, it was found that low UIC (< 100 µg/L) was a risk factor for TN (OR 1.83, 95% CI [1.04-3.22]). Meanwhile, there no statistical difference between UIC 200 and 299 µg/L and UIC 100 and199 µg/L for OR of hypothyroidism, TAI, and TN. This study identified associations between different UIC levels and the prevalence of thyroid disorders, with low UIC (< 100 µg/L) posing a risk for TN, and the detection rate of TN and hypothyroidism was the lowest in UIC (200-299 µg/L) group. Therefore, the acceptable UIC range of 'adequate' iodine intake among adults can be widened from 100-199 µg/L to 100-299 µg/L.

4.
J Hazard Mater ; 470: 134125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565016

RESUMO

The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.


Assuntos
Reatores Biológicos , Dicloretos de Etileno , Membranas Artificiais , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Dicloretos de Etileno/metabolismo , Petróleo/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos
5.
Front Endocrinol (Lausanne) ; 15: 1346284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628585

RESUMO

Objective: This study aims to analyze the association between the occurrence of thyroid nodules and various factors and to establish a risk factor model for thyroid nodules. Methods: The study population was divided into two groups: a group with thyroid nodules and a group without thyroid nodules. Regression with the least absolute shrinkage and selection operator (Lasso) was applied to the complete dataset for variable selection. Binary logistic regression was used to analyze the relationship between various influencing factors and the prevalence of thyroid nodules. Results: Based on the screening results of Lasso regression and the subsequent establishment of the Binary Logistic Regression Model on the training dataset, it was found that advanced age (OR=1.046, 95% CI: 1.033-1.060), females (OR = 1.709, 95% CI: 1.342-2.181), overweight individuals (OR = 1.546, 95% CI: 1.165-2.058), individuals with impaired fasting glucose (OR = 1.590, 95% CI: 1.193-2.122), and those with dyslipidemia (OR = 1.588, 95% CI: 1.197-2.112) were potential risk factors for thyroid nodule disease (p<0.05). The area under the curve (AUC) of the receiver operating characteristic (ROC) curve for the Binary Logistic Regression Model is 0.68 (95% CI: 0.64-0.72). Conclusions: advanced age, females, overweight individuals, those with impaired fasting glucose, and individuals with dyslipidemia are potential risk factors for thyroid nodule disease.


Assuntos
Dislipidemias , Nódulo da Glândula Tireoide , Feminino , Humanos , Nódulo da Glândula Tireoide/epidemiologia , Nódulo da Glândula Tireoide/diagnóstico , Modelos Logísticos , Sobrepeso/complicações , Fatores de Risco , Glucose
7.
Artigo em Inglês | MEDLINE | ID: mdl-38641368

RESUMO

BACKGROUND: Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD: Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS: We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS: These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.

8.
NPJ Parkinsons Dis ; 10(1): 52, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448431

RESUMO

Subthalamic nucleus deep brain stimulation (STN-DBS) has the potential to delay Parkinson's disease (PD) progression. Whether oxidative stress participates in the neuroprotective effects of DBS and related signaling pathways remains unknown. To address this, we applied STN-DBS to mice and monkey models of PD and collected brain tissue to evaluate mitophagy, oxidative stress, and related pathway. To confirm findings in animal experiments, a cohort of PD patients was recruited and oxidative stress was evaluated in cerebrospinal fluid. When PD mice received STN stimulation, the mTOR pathway was suppressed, accompanied by elevated LC3 II expression, increased mitophagosomes, and a decrease in p62 expression. The increase in mitophagy and balance of mitochondrial fission/fusion dynamics in the substantia nigra caused a marked enhancement of the antioxidant enzymes superoxide dismutase and glutathione levels. Subsequently, fewer mitochondrial apoptogenic factors were released to the cytoplasm, which resulted in a suppression of caspase activation and reservation of dopaminergic neurons. While interfaced with an mTOR activator, oxidative stress was no longer regulated by STN-DBS, with no neuroprotective effect. Similar results to those found in the rodent experiments were obtained in monkeys treated with chronic STN stimulation. Moreover, antioxidant enzymes in PD patients were increased after the operation, however, there was no relation between changes in antioxidant enzymes and motor impairment. Collectively, our study found that STN-DBS was able to increase mitophagy via an mTOR-dependent pathway, and oxidative stress was suppressed due to removal of damaged mitochondria, which was attributed to the dopaminergic neuroprotection of STN-DBS in PD.

9.
Environ Pollut ; 347: 123679, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462199

RESUMO

Close relationships exist between metal(loid)s exposure and embryo implantation failure (EIF) from animal and epidemiological studies. However, there are still inconsistent results and lacking of sensitive metal(loid) exposure biomarkers associated with EIF risk. We aimed to ascertain sensitive metal(loid) biomarkers to EIF and provide potential biological explanations. Candidate metal(loid) biomarkers were measured in the female hair (FH), female serum (FS), and follicular fluid (FF) with various exposure time periods. An analytical framework was established by integrating epidemiological association results, comprehensive literature searching, and knowledge-based adverse outcome pathway (AOP) networks. The sensitive biomarkers of metal(loid)s along with potential biological pathways to EIF were identified in this framework. Among the concerned 272 candidates, 45 metal(loid)s biomarkers across six time periods and three biomatrix were initially identified by single-metal(loid) analyses. Two biomarkers with counterfactual results according to literature summary results were excluded, and a total of five biomarkers were further determined from 43 remained candidates in mixture models. Finally, four sensitive metal(loid) biomarkers were eventually assessed by overlapping AOP networks information, including Se and Co in FH, and Fe and Zn in FS. AOP networks also identified key GO pathways and proteins involved in regulation of oxygen species biosynthetic, cell proliferation, and inflammatory response. Partial dependence results revealed Fe in FS and Co in FH at their low levels might be potential sensitive exposure levels for EIF. Our study provided a typical framework to screen the crucial metal(loid) biomarkers and ascertain that Se and Co in FH, and Fe and Zn in FS played an important role in embryo implantation.


Assuntos
Metaloides , Metais Pesados , Animais , Feminino , Metais/toxicidade , Metais/análise , Implantação do Embrião , Biomarcadores , Cabelo/química , Metais Pesados/análise , Monitoramento Ambiental , Metaloides/análise , China , Medição de Risco
10.
Asian J Psychiatr ; 94: 103960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368692

RESUMO

OBJECTIVES: To evaluate the efficacy and safety of combined deep brain stimulation (DBS) with capsulotomy for comorbid motor and psychiatric symptoms in patients with Tourette's syndrome (TS). METHODS: This retrospective cohort study consecutively enrolled TS patients with comorbid motor and psychiatric symptoms who were treated with combined DBS and anterior capsulotomy at our center. Longitudinal motor, psychiatric, and cognitive outcomes and quality of life were assessed. In addition, a systematic review and meta-analysis were performed to summarize the current experience with the available evidence. RESULTS: In total, 5 eligible patients in our cohort and 26 summarized patients in 6 cohorts were included. After a mean 18-month follow-up, our cohort reported that motor symptoms significantly improved by 62.4 % (P = 0.005); psychiatric symptoms of obsessive-compulsive disorder (OCD) and anxiety significantly improved by 87.7 % (P < 0.001) and 78.4 % (P = 0.009); quality of life significantly improved by 61.9 % (P = 0.011); and no significant difference was found in cognitive function (all P > 0.05). Combined surgery resulted in greater improvements in psychiatric outcomes and quality of life than DBS alone. The synthesized findings suggested significant improvements in tics (MD: 57.92, 95 % CI: 41.28-74.56, P < 0.001), OCD (MD: 21.91, 95 % CI: 18.67-25.15, P < 0.001), depression (MD: 18.32, 95 % CI: 13.26-23.38, P < 0.001), anxiety (MD: 13.83, 95 % CI: 11.90-15.76, P < 0.001), and quality of life (MD: 48.22, 95 % CI: 43.68-52.77, P < 0.001). Individual analysis revealed that the pooled treatment effects on motor symptoms, psychiatric symptoms, and quality of life were 78.6 %, 84.5-87.9 %, and 83.0 %, respectively. The overall pooled rate of adverse events was 50.0 %, and all of these adverse events were resolved or alleviated with favorable outcomes. CONCLUSIONS: Combined DBS with capsulotomy is effective for relieving motor and psychiatric symptoms in TS patients, and its safety is acceptable. However, the optimal candidate should be considered, and additional experience is still necessary.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Síndrome de Tourette , Humanos , Síndrome de Tourette/complicações , Síndrome de Tourette/cirurgia , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Qualidade de Vida , Estudos Retrospectivos , Transtorno Obsessivo-Compulsivo/complicações , Transtorno Obsessivo-Compulsivo/terapia , Transtorno Obsessivo-Compulsivo/diagnóstico
11.
J Neurosurg ; : 1-14, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241667

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has demonstrated efficacy against multiple types of dystonia, but only a few case reports and small-sample studies have investigated the clinical utility of STN-DBS for Meige syndrome, a rare but distressing form of craniofacial dystonia. Furthermore, the effects of DBS on critical neuropsychological sequelae, such as depression and anxiety, are rarely examined. In this study, the authors investigated the therapeutic efficacy of STN-DBS for both motor and psychiatric symptoms of Meige syndrome. METHODS: The authors retrospectively reviewed consecutive patients with Meige syndrome receiving bilateral STN-DBS at their institution from January 2016 to June 2023. Motor performance and nonmotor features including mood, cognitive function, and quality of life (QOL) were evaluated using standardized rating scales at baseline and at final postoperative follow-up. Clinical and demographic factors influencing postoperative motor outcome were evaluated by uni- and multivariable linear regression models. RESULTS: Fifty-one patients were ultimately included, with a mean ± SD follow-up duration of 27.3 ± 18.0 months. The mean Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) movement score improved from 12.9 ± 5.2 before surgery to 5.3 ± 4.2 at the last follow-up (mean improvement 58.9%, p < 0.001) and the mean BFMDRS disability score improved from 5.6 ± 3.3 to 2.9 ± 2.9 (mean improvement 44.6%, p < 0.001). Hamilton Depression and Anxiety Rating Scale scores also improved by 35.3% and 34.2%, respectively, and the postoperative 36-item Short-Form Health Survey score indicated substantial QOL enhancement. Global cognition remained stable after treatment. Multiple linear regression analysis identified disease duration (ß = -0.241, p = 0.027), preoperative anxiety severity (ß = -0.386, p = 0.001), and volume of activated tissue within the dorsolateral (sensorimotor) STN (ß = 0.483, p < 0.001) as independent predictors of motor outcome. CONCLUSIONS: These findings support STN-DBS as an effective and promising therapy for both motor and nonmotor symptoms of Meige syndrome. Timely diagnosis, treatment of preoperative anxiety, and precise electrode placement within the dorsolateral STN are essential for optimal clinical outcome.

12.
CNS Neurosci Ther ; 30(3): e14435, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37664885

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease. Exosomes are endosome-derived extracellular vesicles that can take part in intercellular communication. Circular RNAs (circRNAs) are noncoding RNAs characterized by covalently closed-loop structures, which perform a crucial function in many diseases. AIM: To clarify the expression and function of exosomal circRNSs of PD patients and look for circRNAs that might be related to the pathogenesis of PD. MATERIALS AND METHODS: We examined circRNA and mRNA expression profiles in peripheral exosomes from PD patients (n = 23) and healthy controls (n = 15) using next-generation sequencing (NGS) technology, functional annotation, and quantitative polymerase chain reaction. Correlation analysis was performed between the expression levels of the circRNAs and the clinical characteristics of PD patients. The binding miRNAs and target genes were predicted using TargetScanHuman, miRDB, and miRTarBase. The predicted target genes were compared with the differentially expressed mRNAs in sequencing results. RESULTS: According to the NGS, 62 upregulated and 37 downregulated circRNAs in the PD group were screened out. Correlation analysis revealed that hsa-SCMH1_0001 has strong clinical relevance. We identified 17 potential binding miRNAs of hsa-SCMH1_0001 with 149 potential target genes. ARID1A and C1orf115 belong to the intersection of the predicted target genes and the differentially expressed mRNAs obtained by sequencing. CONCLUSION: This study suggested that hsa-SCMH1_0001 and its target genes ARID1A and C1orf115 are downregulated in PD patients and may be involved in the occurrence of PD.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , RNA Circular/genética , Transcriptoma , Doença de Parkinson/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
13.
Int J Biol Macromol ; 256(Pt 2): 128453, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016613

RESUMO

Osteoarthritis (OA) is the most prevalent age-related and degenerative joint disease with limited treatment options. Previous studies have identified the therapeutic effects of mesenchymal stem cells (MSCs) therapy. Nevertheless, chronic inflammation impedes MSCs therapeutic effect. There have been reports suggesting that circular RNAs (circRNAs) are involved in OA and chondrogenesis. The combination of MSCs and circRNAs in therapies appears to be a promising option. In this study, we identified circIRAK3 as a significant regulator in cartilage degeneration and chondrogenesis through high-throughput sequencing analyses. We observed increased circIRAK3 in OA cartilage and during MSCs chondrogenesis. Knockdown of circIRAK3 resulted in excessive apoptosis, inhibited proliferation, and degradation of chondrocytes, along with the inhibition of MSCs chondrogenesis. Mechanistically, circIRAK3 bound to HNRNP U and competitively prevented its binding to IL-1ß, TNFα, and IL6 mRNA, thereby promoting mRNA degradation. Notably, circIRAK3 expression in plasma increased with higher OARSI scores. Intra-articular injection of adeno-associated virus-circIRAK3 delayed cartilage degeneration and reduced inflammation in DMM mouse model. Our study highlights a compensatory regulation network of circIRAK3 in chondrocytes in response to inflammation. CircIRAK3 has the potential to serve as a new therapeutic target for OA. Furthermore, therapies targeting circIRAK3 combined with MSCs hold promise.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Citocinas/genética , Citocinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Circular/metabolismo , Retroalimentação , Condrogênese/genética , Inflamação/genética , Inflamação/metabolismo , Condrócitos
14.
Front Neurol ; 14: 1270746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928164

RESUMO

Background: Reduction of medication in Parkinson's disease (PD) following subthalamic nucleus deep brain stimulation (STN-DBS) has been recognized, but the optimal timing for medication adjustments remains unclear, posing challenges in postoperative patient management. Objective: This study aimed to provide evidence for the timing of medication reduction post-DBS using propensity score matching (PSM). Methods: In this study, initial programming and observation sessions were conducted over 1 week for patients 4-6 weeks postoperatively. Patients were subsequently categorized into medication reduction or non-reduction groups based on their dyskinesia evaluation using the 4.2-item score from the MDS-UPDRS-IV. PSM was employed to maintain baseline comparability. Short-term motor and neuropsychiatric symptom assessments for both groups were conducted 3-6 months postoperatively. Results: A total of 123 PD patients were included. Baseline balance in motor and non-motor scores was achieved between the two groups based on PSM. Short-term efficacy revealed a significant reduction in depression scores within the non-reduction group compared to baseline (P < 0.001) and a significant reduction compared to the reduction group (P = 0.037). No significant differences were observed in UPDRS-III and HAMA scores between the two groups. Within-group analysis showed improvements in motor symptoms, depression, anxiety, and subdomains in the non-reduction group, while the reduction group exhibited improvements only in motor symptoms. Conclusion: This study provides evidence for the timing of medication reduction following DBS. Our findings suggest that early maintenance of medication stability is more favorable for improving neuropsychiatric symptoms.

15.
Environ Sci Pollut Res Int ; 30(57): 120329-120339, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37936048

RESUMO

In this pilot-scale study, simultaneous partial nitrification, anammox, and denitrification (SNAD) process was achieved successfully in a moving bed biofilm reactor (MBBR) for treating anaerobic digester liquor of swine wastewater. After 95 days of operation, when the total nitrogen loading rate of SNAD-MBBR process was 1.09 kg TN/m3/day, the total nitrogen removal rate could reach 0.87 kg TN/m3/day, and the removal efficiencies of ammonium and total nitrogen were 92.0% and 79.7%, respectively. The optimum pH and temperature for SNAD-MBBR process were 8.5 and 35 °C, respectively, and the optimum dissolved oxygen for SNAD1 and SNAD2 were 0.30 and 0.07 mg/L, respectively. The 16S rRNA sequencing suggested that Candidatus Kuenenia, Candidatus Brocadia, Nitrosomonas, and Denitratisoma were the dominant nitrogen removal bacteria. Some of the co-existing bacteria (Truepera, Limnobacter, and Anaerolineaceae uncultured) promoted ammonium oxidation and guaranteed the growth of the anammox bacteria under adverse environmental conditions. Overall, this study demonstrated that the SNAD-MBBR process would be an energy-saving and cost-effective method for the removal of nitrogen from swine wastewater and provided important process parameters for stable operation of the full-scale SNAD process.


Assuntos
Compostos de Amônio , Microbiota , Suínos , Animais , Nitrificação , Águas Residuárias , Desnitrificação , Anaerobiose , Biofilmes , Oxidação Anaeróbia da Amônia , RNA Ribossômico 16S , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio/análise , Oxirredução , Esgotos/microbiologia
16.
Microb Cell Fact ; 22(1): 230, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936187

RESUMO

The physical states and chemical components of bulk sludge determine the occurrence and development of membrane fouling in membrane bioreactors. Thus, regulation of sludge suspensions can provide new strategies for fouling control. In this study, we used "top-down" enrichment to construct a synthetic anti-fouling consortium (SAC) from bio-cake and evaluate its roles in preventing membrane fouling. The SAC was identified as Massilia-dominated and could almost wholly degrade the alginate solution (1,000 mg/L) within 72 h. Two-dimensional Fourier transformation infrared correlation spectroscopy (2D-FTIR-CoS) analysis demonstrated that the SAC induced the breakage of glycosidic bond in alginates. The co-cultivation of sludge with a low dosage of SAC (ranging from 0 to 1%) led to significant fouling mitigation, increased sludge floc size, and decreased unified membrane fouling index value (0.55 ± 0.06 and 0.11 ± 0.05). FTIR spectra and X-ray spectroscopy analyses demonstrated that the addition of SAC decreased the abundance of the O-acetylation of polysaccharides in extracellular polymeric substances. Secondary derivatives analysis of amide I spectra suggested a strong reduction in the α-helix/(ß-sheet + random coil) ratio in the presence of SAC, which was expected to enhance cell aggregation. Additionally, the extracellular secretions of SAC could both inhibit biofilm formation and strongly disperse the existing biofilm strongly during the biofilm incubation tests. In summary, this study illustrates the feasibility and benefits of using SAC for fouling control and provides a new strategy for fouling control.


Assuntos
Incrustação Biológica , Esgotos , Esgotos/química , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Biofilmes , Polissacarídeos , Reatores Biológicos , Alginatos
17.
iScience ; 26(11): 107983, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867956

RESUMO

Neurosurgical robots have developed for decades and can effectively assist surgeons to carry out a variety of surgical operations, such as biopsy, stereo-electroencephalography (SEEG), deep brain stimulation (DBS), and so forth. In recent years, neurosurgical robots in China have developed rapidly. This article will focus on several key skills in neurosurgical robots, such as medical imaging systems, automatic manipulator, lesion localization techniques, multimodal image fusion technology, registration method, and vascular imaging technology; introduce the clinical application of neurosurgical robots in China, and look forward to the potential improvement points in the future based on our experience and research in the field.

18.
Water Res ; 245: 120587, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717335

RESUMO

The hybrid sludge-biofilm processes have been widely applied for the construction or upgradation of biological wastewater treatment process. Ecological mechanisms of biofilm development remain unclear in the hybrid ecosystem, because of the intricate interactive effects between sludge and biofilms. Herein, the establishment principles of biofilms with distinct coexisting sludge amounts were uncovered by varying sludge retention times (SRTs) from 5 to 40 days in the hybrid process. With the increasing of SRTs, biofilm biomass decreased with the increase of suspended sludge, resulting in lower biofilm proportion. As estimated by the Gompertz growth model, the increased sludge amounts (i.e., higher SRTs of 20 and 40 days) prolonged the initial colonization stage and decreased the specific development rate of biofilms when compared to lower sludge amounts with the shorter SRTs (i.e., 5 and 10 days). Null model analysis demonstrated that deterministic homogenous selection could facilitate the colonization and accumulation of biofilms with less coexisting sludge (SRT of 10 days). However, stochastic ecological drift and homogenizing dispersal dominated the colonization and accumulation stages of biofilms with more coexisting sludge (SRT of 20 days), respectively. The ecological networks reflected that positively-related taxa presented taxonomic relatedness, whereas high inconsistency of taxonomic relatedness was observed among aggregate forms or development stages as affected by varied SRTs. The high incidence of intra-taxa co-occurrence patterns suggested that taxa with similar ecological niches could be specifically selected in biofilms when being exposed with less coexisting sludge. This study uncovered ecological mechanisms of biofilm development driven by varying the SRTs of suspended sludge, which would help to propose appropriate strategies for the efficient start-up and optimization of the hybrid sludge-biofilm system.

19.
Nat Commun ; 14(1): 5434, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669927

RESUMO

Parkinson's disease (PD) is associated with excessive beta activity in the basal ganglia. Brain sensing implants aim to leverage this biomarker for demand-dependent adaptive stimulation. Sleep disturbance is among the most common non-motor symptoms in PD, but its relationship with beta activity is unknown. To investigate the clinical potential of beta activity as a biomarker for sleep quality in PD, we recorded pallidal local field potentials during polysomnography in PD patients off dopaminergic medication and compared the results to dystonia patients. PD patients exhibited sustained and elevated beta activity across wakefulness, rapid eye movement (REM), and non-REM sleep, which was correlated with sleep disturbance. Simulation of adaptive stimulation revealed that sleep-related beta activity changes remain unaccounted for by current algorithms, with potential negative outcomes in sleep quality and overall quality of life for patients.


Assuntos
Doença de Parkinson , Transtornos do Sono-Vigília , Humanos , Qualidade de Vida , Sono , Globo Pálido , Gânglios da Base
20.
Cell Death Discov ; 9(1): 342, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714835

RESUMO

Levodopa-induced dyskinesia (LID) is a common motor complication in Parkinson's disease. However, few studies have focused on the pathogenesis of LID at the transcriptional level. NONRATT023402.2, a long non-coding RNA (lncRNA) that may be related to LID was discovered in our previous study and characterized in rat models of LID. In the present study, NONRATT023402.2 was overexpressed by injection of adeno-associated virus (AAV) in striatum of LID rats, and 48 potential target genes, including nerve growth factor receptor (NGFR) were screened using next-generation sequencing and target gene predictions. The NONRATT023402.2/rno-miR-3065-5p/NGFR axis was verified using a dual luciferase reporter gene. Overexpression of NONRATT023402.2 significantly increased the abnormal involuntary movements (AIM) score of LID rats, activated the PI3K/Akt signaling pathway, and up-regulated c-Fos in the striatum. NGFR knockdown by injection of ShNGFR-AAV into the striatum of LID rats resulted in a significant decrease in the PI3K/Akt signaling pathway and c-Fos expression. The AIM score of LID rats was positively correlated with the expressions of NONRATT023402.2 and NGFR. A dual luciferase reporter assay showed that c-Fos, as a transcription factor, bound to the NONRATT023402.2 promoter and activated its expression. Together, the results showed that NONRATT023402.2 regulated NGFR expression via a competing endogenous RNA mechanism, which then activated the PI3K/Akt pathway and promoted c-Fos expression. This suggested that c-Fos acted as a transcription factor to activate NONRATT023402.2 expression, and form a positive feedback regulation loop in LID rats, thus, aggravating LID symptoms. NONRATT023402.2 is therefore a possible novel therapeutic target for LID.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA