Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37507879

RESUMO

Drought stress is one of the major environmental factors severely restricting plant development and productivity. Acer truncatum B, which is an economically important tree species, is highly tolerant to drought conditions, but the underlying molecular regulatory mechanisms remain relatively unknown. In this study, A. truncatum seedlings underwent a drought treatment (water withheld for 0, 3, 7, and 12 days), after which they were re-watered for 5 days. Physiological indices were measured and a transcriptome sequencing analysis was performed to reveal drought response-related regulatory mechanisms. In comparison to the control, the drought treatment caused a significant increase in antioxidant enzyme activities, with levels rising up to seven times, and relative electrical conductivity from 14.5% to 78.4%, but the relative water content decreased from 88.3% to 23.4%; these indices recovered somewhat after the 5-day re-watering period. The RNA sequencing analysis identified 9126 differentially expressed genes (DEGs), which were primarily involved with abscisic acid responses, and mitogen-activated protein kinase signaling. These DEGs included 483 (5.29%) transcription factor genes from 53 families, including ERF, MYB, and NAC. A co-expression network analysis was conducted and three important modules were analyzed to identify hub genes, one of which (AtruNAC36) was examined to clarify its function. The AtruNAC36 protein was localized to the nucleus and had a C-terminal transactivation domain. Moreover, it bounded specifically to the NACRS element. The overexpression of AtruNAC36 in Arabidopsis thaliana resulted in increased drought tolerance by enhancing antioxidant enzyme activities. These findings provide important insights into the transcriptional regulation mediating the A. truncatum response to drought. Furthermore, AtruNAC36 may be relevant for breeding forest trees resistant to drought stress.

2.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298311

RESUMO

Glutathione S-transferases (GSTs) play a crucial role in responding to abiotic stress and are an important target for research on plant stress tolerance mechanisms. Populus euphratica is a promising candidate species for investigating the abiotic tolerance mechanisms in woody plants. In our previous study, PeGSTU58 was identified as being associated with seed salinity tolerance. In the present study, PeGSTU58 was cloned from P. euphratica and functionally characterized. PeGSTU58 encodes a Tau class GST and is located in both the cytoplasm and nucleus. Transgenic Arabidopsis overexpressing PeGSTU58 displayed enhanced tolerance to salt and drought stress. Under salt and drought stress, the transgenic plants exhibited significantly higher activities of antioxidant enzymes, including SOD, POD, CAT, and GST, compared to the wild-type (WT) plants. Additionally, the expression levels of several stress-responsive genes, including DREB2A, COR47, RD22, CYP8D11, and SOD1 were upregulated in PeGSTU58 overexpression lines compared to those in WT Arabidopsis under salt and drought stress conditions. Furthermore, yeast one-hybrid assays and luciferase analysis showed that PebHLH35 can directly bind to the promoter region of PeGSTU58 and activate its expression. These results indicated that PeGSTU58 was involved in salt and drought stress tolerances by maintaining ROS homeostasis, and its expression was positively regulated by PebHLH35.


Assuntos
Arabidopsis , Populus , Arabidopsis/metabolismo , Secas , Fatores de Transcrição/metabolismo , Populus/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Cloreto de Sódio na Dieta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA