RESUMO
BACKGROUND: Childhood emotional maltreatment, non-suicidal self-injury and depression are prevalent among adolescents with mood disorders. While existing model indicated that childhood emotional maltreatment, functions of non-suicidal self-injury and depression are interrelated, not much is understood about the interplay of functions of non-suicidal self-injury in the relationship between childhood emotional maltreatment and depression. Thus, the goal of this research was to ascertain how functions of non-suicidal self-injury relate to childhood emotional maltreatment and depression. METHODS: The participants were adolescents with mood disorders from three hospitals in Sichuan Province, data was collected using self-administered questionnaires, including the Childhood Trauma Questionnaire, Ottawa Self-injury Inventory-Functions, and Childhood Depression Inventory. SPSS26.0 software and PROCESS v3.3 model 4 were used for analysis. RESULTS: In all, 235 adolescents (Mage=14.8, SD = 1.62) participated in the research. The functions of non-suicidal self-injury (r = 0.289, P < 0.01) and depression (r = 0.475, P < 0.01) were considerably positively connected with childhood emotional maltreatment, and the functions of non-suicidal self-injury were strongly positively correlated with depression (r = 0.364, P < 0.01). The direct impact of childhood emotional maltreatment on depression in adolescents was found to be significant (95% CI 0.434, 0.828) in the mediated effects model. Additionally, the indirect effect of childhood emotional maltreatment on depression through functions of non-suicidal self-injury was found to be significant (95% CI 0.055, 0.236), with a mediating effect value of 17.58%. CONCLUSION: Childhood emotional maltreatment has a direct impact on depression, but it also has an indirect influence through mediation roles of functions of non-suicidal self-injury. Medical staff should take care of the mental health of adolescents hospitalized for mood disorders so that they can clarify the role of functions of NSSI in lowering depressive symptoms and improving quality of life and create more targeted and effective intervention plans.
Assuntos
Maus-Tratos Infantis , Depressão , Comportamento Autodestrutivo , Humanos , Adolescente , Feminino , Masculino , Comportamento Autodestrutivo/psicologia , Maus-Tratos Infantis/psicologia , China , Depressão/psicologia , Transtornos do Humor/psicologia , Abuso Emocional/psicologia , Criança , Inquéritos e QuestionáriosRESUMO
BACKGROUND: The cancer burden in China has been increasing over the decades. However, the cancer incidence remains unknown in Ma'anshan, which is one of the central cities in the Yangtze River Delta in Eastern China. The study was designed to describe the cancer incidence and trends in Ma'anshan from 2011 to 2018, providing information about cancer etiology that is useful for prevention programs. METHODS: The cancer incidence rate and age-standardized incidence rate (ASIR) were calculated using the cancer registry data in Ma'anshan during 2011-2018. The average annual percentage change (AAPC) of the ASIR was analyzed by the Joinpoint regression analysis. Age, period, and cohort effects on cancer incidence were estimated through the age-period-cohort model. RESULTS: There were 13,508 newly diagnosed cancer cases in males and 9558 in females in Ma'anshan during 2011-2018. The ASIR maintained a steady trend in both males and females. Age effects showed that cancer risk increased with age in both genders; no visible period effects were detected during this study period. Cohort effects changed slowly until the end of the 1950s, then started decreasing in males while increasing in females after 1960. Lung, gastric, female breast, colorectal, cervical, esophageal, liver, thyroid, lymphoma, and pancreatic cancer were the most common cancers in Ma'anshan during the study period. The ASIR of gastric cancer (AAPC: -3.72%), esophageal cancer (AAPC: -8.30%), and liver cancer (AAPC: -5.55%) declined, while that of female breast cancer (AAPC: 3.91%), colorectal cancer (AAPC: 3.23%), and thyroid cancer (AAPC: 22.38%) rose. CONCLUSION: During 2011-2018, the cancer incidence in Ma'anshan was lower than that in China, nation-wide. The incidence of upper gastrointestinal cancer decreased gradually while female breast, colorectal, and thyroid cancers showed an upward trend, consistent with the changes in the cancer spectrum in China. Further studies should be designed to discover the underlying causes of these findings.
Assuntos
Neoplasias , Sistema de Registros , Humanos , China/epidemiologia , Neoplasias/epidemiologia , Incidência , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Adolescente , Criança , Adulto Jovem , Pré-Escolar , Lactente , Recém-Nascido , Idoso de 80 Anos ou maisRESUMO
Introduction: Graphene oxide (GO) nanoparticles have emerged as a compelling photothermal agent (PHTA) in the realm of photothermal antibacterial therapy, owing to their cost-effectiveness, facile synthesis, and remarkable photostability. Nevertheless, the therapeutic efficacy of GO nanoparticles is commonly hindered by their inherent drawback of low photothermal conversion efficiency (PCE). Methods: Herein, we engineer the Ag/GO-GelMA platform by growing the Ag on the surface of GO and encapsulating the Ag/GO nanoparticles into the GelMA hydrogels. Results: The resulting Ag/GO-GelMA platform demonstrates a significantly enhanced PCE (47.6%), surpassing that of pure GO (11.8%) by more than fourfold. As expected, the Ag/GO-GelMA platform, which was designed to integrate the benefits of Ag/GO nanoparticles (high PCE) and hydrogel (slowly releasing Ag+ to exert an inherent antibacterial effect), has been shown to exhibit exceptional antibacterial efficacy. Furthermore, transcriptome analyses demonstrated that the Ag/GO-GelMA platform could significantly down-regulate pathways linked to inflammation (the MAPK and PI3K-Akt pathways) and had the ability to promote cell migration. Discussion: Taken together, this study presents the design of a potent photothermal antibacterial platform (Ag/GO-GelMA) aimed at enhancing the healing of infectious wounds. The platform utilizes a handy method to enhance the PCE of GO, thereby making notable progress in the utilization of GO nano-PHTAs.
Assuntos
Antibacterianos , Grafite , Hidrogéis , Prata , Cicatrização , Grafite/química , Grafite/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Humanos , Camundongos , Terapia Fototérmica/métodos , Nanopartículas/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Movimento Celular/efeitos dos fármacosRESUMO
Advances in materials science are increasingly dependent on the development of multifunctional materials capable of improving system efficiency and reducing the environmental impact. In this study, two zero-dimensional (0D) cadmium-based organic-inorganic hybrid materials (BEMPD)2CdBr4 (BEMPD-Br, 1) and (BEMPD)2CdBr2Cl2 (BEMPD-ClBr, 2) (BEMPD = 1-(2-bromoethyl)-1-methylpiperidine) were prepared by halogen doping. Compound 2 is a mixed halide in which there are two halogen sites, Cl and Br, and in a disordered state, which has a regulatory effect on the structural distortion and properties of the compound. The Curie temperatures of compounds 1 and 2 are 348 and 390 K, respectively, and the UV-vis absorption spectra showed that the direct band gaps of compounds 1 and 2 were 4.68 and 4.8 eV, respectively. In addition, room-temperature photoluminescence experiments show broadband emission peaks at 717 and 683 nm for compounds 1 and 2, respectively, with fluorescence lifetimes of 2.414 and 3.915 µs. These 0D hybrids provide an avenue for the development of smart materials and optoelectronic devices, and also provide positive clues for manipulating the properties of organic-inorganic hybrid compounds.
RESUMO
Infectious bone defects resulting from surgery, infection, or trauma are a prevalent clinical issue. Current treatments commonly used include systemic antibiotics and autografts or allografts. Nevertheless, therapies come with various disadvantages, including multidrug-resistant bacteria, complications arising from the donor site, and immune rejection, which makes artificial implants desirable. However, artificial implants can fail due to bacterial infections and inadequate bone fusion after implantation. Thus, the development of multifunctional bone substitutes that are biocompatible, antibacterial, osteoconductive, and osteoinductive would be of great clinical importance. This study designs and prepares 2D graphene oxide (GO) and black phosphorus (BP) reinforced porous collagen (Col) scaffolds as a viable strategy for treating infectious bone defects. The fabricated Col-GO@BP scaffold exhibited an efficient photothermal antibacterial effect under near-infrared (NIR) irradiation. A further benefit of the NIR-controlled degradation of BP was to promote biomineralization by phosphorus-driven and calcium-extracted phosphorus in situ. The abundant functional groups in GO could synergistically capture the ions and enhance the in situ biomineralization. The Col-GO@BP scaffold facilitated osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSC) by leveraging its mild photothermal effect and biomineralization process, which upregulated heat shock proteins (HSPs) and activated PI3K/Akt pathways. Additionally, systematic in vivo experiments demonstrated that the Col-GO@BP scaffold obviously promotes infectious bone repair through admirable photothermal antibacterial performance and enhanced vascularization. As a result of this study, we provide new insights into the photothermal activity of GO@BP nanosheets, their degradation, and a new biological application for them.
Assuntos
Antibacterianos , Colágeno , Grafite , Células-Tronco Mesenquimais , Fósforo , Alicerces Teciduais , Animais , Ratos , Antibacterianos/química , Antibacterianos/farmacologia , Biomineralização/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Colágeno/química , Escherichia coli/efeitos dos fármacos , Grafite/química , Grafite/farmacologia , Raios Infravermelhos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fósforo/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Alicerces Teciduais/químicaRESUMO
Recently, Ru single atoms supported on carbon nanomaterials have demonstrated ultrahigh activity for acid hydrogen evolution reaction (HER), however their neutral HER activity remains low due to the sluggish kinetics for both the water dissociation step to generate H* intermediates and subsequent H* recombination in neutral electrolytes. Here, we synthesize ordered low-coordinated Ru atom arrays confined in Mn oxides (i.e., Li4Mn5O12) for concurrently boosting the water dissociation and H* recombination, thus achieving a 6-fold HER activity enhancement than commercial Pt/C in neutral media. Control experiments indicate that low-coordinated Ru atoms with strong affinity to oxygen atoms of water molecules facilitate the water dissociation to rapidly generate H*. More importantly, both electrochemical and theoretic results uncover that the array-like structure allows the activation of two water molecules on two adjacent Ru atoms for enabling direct H*-H* recombination via the Tafel step, while isolated Ru atoms can only activate water one by one for recombining H* via the sluggish Heyrovsky step. Clearly, this work paves new avenues to boosting the electrocatalytic activity by constructing ordered metal atoms assembles with controllable coordination environments.
RESUMO
Metal halide perovskites hold great potential for next-generation light-emitting diodes (PeLEDs). Despite significant progress, achieving high-performance PeLEDs hinges on optimizing the interface between the perovskite crystal film and the charge transport layers, especially the buried interface, which serves as the starting point for perovskite growth. Here, we develop a bottom-up perovskite film modulation strategy using formamidine acetate (FAAc) to enhance the buried interface. This multifaceted approach facilitates the vertical-oriented growth of high-quality perovskites with minimized defects. Meanwhile, the in situ deprotonation between FA+ and ZnO could eliminate the hydroxyl (-OH) defects and modulate the energy level of ZnO. The resulting FAPbI3-PeLED exhibits a champion EQE of 23.84% with enhanced operational stability and suppressed EQE roll-off. This strategy is also successfully extended to other mixed-halide PeLEDs (e.g., Cs0.17FA0.83Pb(I0.75Br0.25)3), demonstrating its versatility as an efficient and straightforward method for enhancing the PeLEDs' performance.
RESUMO
In response to the phenomenon of interlayer transport channel swelling caused by the hydration of oxygen-containing functional groups on the GO membrane surface, a moderate heat treatment method was employed to controllably reduce the graphene oxide (GO) membrane and prepare a reduced GO composite nanofiltration membrane (mixed cellulose membrane (MCE)/ethylenediamine (EDA)/reduced GO-X (RGO-X)). The associations of different heat treatment temperatures with the hydrophilicity, interlayer structure, permeability and dye/salt rejection properties of GO membranes were systematically explored. The results indicated that the oxygen-containing groups of the GO membrane were partially eliminated after heat treatment, and the hydrophilicity was weakened. This effectively weakened the hydration between the GO membrane and the water molecules and inhibited the swelling of the oxidized graphene membrane. In the dye desalination test, the MCE/EDA/RGO membrane exhibited an ultra-high rejection rate of over 97% for methylene blue (MB) dye molecules. In addition, heat treatment increased the structural defects of the GO membrane and promoted the fast passage of water molecules via the membrane. In pure water flux testing, the water flux of the membrane remained above 46.58 Lm-2h-1bar-1, while the salt rejection rate was relatively low.
RESUMO
BACKGROUND: Sirolimus is increasingly utilized in treating diseases associated with mTOR pathway overactivation. Despite its potential, the lack of evidence regarding its long-term safety across all age groups, particularly in pediatric patients, has limited its further application. This study aims to assess the long-term safety of sirolimus, with a specific focus on its impact on growth patterns in pediatric patients. METHODS: This pooled analysis inlcudes two prospective cohort studies spanning 10 years, including 1,738 participants (aged 5 days to 69 years) diagnosed with tuberous sclerosis and/or lymphangioleiomyomatosis. All participants were mTOR inhibitor-naive and received 1 mg/m²/day of sirolimus, with dose adjustments during a two-week titration period to maintain trough blood concentrations between 5 and 10 ng/ml (maximum dose 2 mg). Indicators of physical growth, hematopoietic, liver, renal function, and blood lipid levels were all primary outcomes and were analyzed. The adverse events and related management were also recorded. RESULTS: Sirolimus administration did not lead to deviations from normal growth ranges, but higher doses exhibited a positive association with Z-scores exceeding 2 SD in height, weight, and BMI. Transient elevations in red blood cell and white blood cell counts, along with hyperlipidemia, were primarily observed within the first year of treatment. Other measured parameters remained largely unchanged, displaying only weak correlations with drug use. Stomatitis is the most common adverse event (920/1738, 52.9%). In adult females, menstrual disorders were observed in 48.5% (112/217). CONCLUSIONS: Sirolimus's long-term administration is not associated with adverse effects on children's physical growth pattern, nor significant alterations in hematopoietic, liver, renal function, or lipid levels. A potential dose-dependent influence on growth merits further exploration. TRIAL REGISTRATION: Pediatric patients: Chinese clinical trial registry, No. ChiCTR-OOB-15,006,535. Adult patients: ClinicalTrials, No. NCT03193892.
Assuntos
Sirolimo , Humanos , Sirolimo/efeitos adversos , Sirolimo/uso terapêutico , Criança , Feminino , Adolescente , Pré-Escolar , Adulto , Masculino , Lactente , Adulto Jovem , Pessoa de Meia-Idade , Recém-Nascido , Idoso , Esclerose Tuberosa/tratamento farmacológico , Linfangioleiomiomatose/tratamento farmacológico , Estudos ProspectivosRESUMO
Neuropathic pain is a highly prevalent and refractory condition, yet its mechanism remains poorly understood. While NR1, the essential subunit of NMDA receptors, has long been recognized for its pivotal role in nociceptive transmission, its involvement in presynaptic stimulation is incompletely elucidated. Transcription factors can regulate the expression of both pro-nociceptive and analgesic factors. Our study shows that transcription factor TFAP2A was up-regulated in the dorsal root ganglion (DRG) neurons, satellite glial cells (SGCs), and Schwann cells following spinal nerve ligation (SNL). Intrathecal injection of siRNA targeting Tfap2a immediately or 7 days after SNL effectively alleviated SNL-induced pain hypersensitivity and reduced Tfap2a expression levels. Bioinformatics analysis revealed that TFAP2A may regulate the expression of the Grin1 gene, which encodes NR1. Dual-luciferase reporter assays confirmed TFAP2A's positive regulation of Grin1 expression. Notably, both Tfap2a and Grin1 were expressed in the primary SGCs and upregulated by lipopolysaccharides. The expression of Grin1 was also down-regulated in the DRG following Tfap2a knockdown. Furthermore, intrathecal injection of siRNA targeting Grin1 immediately or 7 days post-SNL effectively alleviated SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, intrathecal Tfap2a siRNA alleviated SNL-induced neuronal hypersensitivity, and incubation of primary SGCs with Tfap2a siRNA decreased NMDA-induced upregulation of proinflammatory cytokines. Collectively, our study reveals the role of TFAP2A-Grin1 in regulating neuropathic pain in peripheral glia, offering a new strategy for the development of novel analgesics.
Assuntos
Gânglios Espinais , Neuralgia , Neuroglia , Receptores de N-Metil-D-Aspartato , Fator de Transcrição AP-2 , Animais , Neuralgia/metabolismo , Neuralgia/genética , Gânglios Espinais/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Masculino , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Neuroglia/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Hiperalgesia/metabolismo , Hiperalgesia/genéticaRESUMO
Electrochemical co-reduction of nitrate (NO3-) and carbon dioxide (CO2) has been widely regarded as a promising route to produce urea under ambient conditions, however the yield rate of urea has remained limited. Here, we report an atomically ordered intermetallic pallium-zinc (PdZn) electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis. It is found that Pd and Zn are responsible for the adsorption and activation of NO3- and CO2, respectively, and thus the co-adsorption and co-activation NO3- and CO2 are achieved in ordered PdZn pairs. More importantly, the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier, as demonstrated on both operando measurements and theoretical calculations. Consequently, the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78% and a urea yield rate of 1274.42 µg mg-1 h-1, and the latter is 1.5-fold larger than disordered pairs in PdZn alloys. This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.
RESUMO
BACKGROUND: Gastric signet ring cell carcinoma (GSRC) represents a specific subtype of gastric cancer renowned for its contentious epidemiological features, treatment principles, and prognostic factors. AIM: To investigate the epidemiology of GSRC and establish an improved model for predicting the prognosis of patients with locally advanced GSRC (LAGSRC) after surgery. METHODS: The annual rates of GSRC incidence and mortality, covering the years 1975 to 2019, were extracted from the Surveillance, Epidemiology, and End Results (SEER) database to explore the temporal trends in both disease incidence and mortality rates using Joinpoint software. The clinical data of 3793 postoperative LAGSRC patients were collected from the SEER database for the analysis of survival rates. The Cox regression model was used to explore the independent prognostic factors for overall survival (OS). The risk factors extracted were used to establish a prognostic nomogram. RESULTS: The overall incidence of GSRC increased dramatically between 1975 and 1998, followed by a significant downward trend in incidence after 1998. In recent years, there has been a similarly optimistic trend in GSRC mortality rates. The trend in GSRC showed discrepancies based on age and sex. Receiver operating characteristic curves, calibration curves, and decision curve analysis for 1-year, 3-year, and 5-year OS demonstrated the high discriminative ability and clinical utility of this nomogram. The area under the curve indicated that the performance of the new model outperformed that of the pathological staging system. CONCLUSION: The model we established can aid clinicians in the early prognostication of LAGSRC patients, resulting in improved clinical outcomes by modifying management strategies and patient health care.
RESUMO
Developing biodegradable polyurethane (PU) materials as an alternative to non-degradable petroleum-based PU is a crucial and challenging task. This study utilized lactide as the starting material to synthesize polylactide polyols (PLA-OH). PLA-based polyurethanes (PLA-PUs) were successfully synthesized by introducing PLA-OH into the PU molecular chain. A higher content of PLA-OH in the soft segments resulted in a substantial improvement in the mechanical attributes of the PLA-PUs. This study found that the addition of PLA-OH content significantly improved the tensile stress of the PU from 5.35 MPa to 37.15 MPa and increased the maximum elongation to 820.8%. Additionally, the modulus and toughness of the resulting PLA-PU were also significantly improved with increasing PLA-OH content. Specifically, the PLA-PU with 40% PLA-OH exhibited a high modulus of 33.45 MPa and a toughness of 147.18 MJ m-3. PLA-PU films can be degraded to carbon dioxide and water after 6 months in the soil. This highlights the potential of synthesizing PLA-PU using biomass-renewable polylactide, which is important in green and sustainable chemistry.
RESUMO
Inspired by the structure characteristics of natural products, the size and morphology of particles are carefully controlled using a bottom-up approach to construct nanomaterials with specific spatial unit distribution. Animal polysaccharide nanomaterials, such as chitosan and chondroitin sulfate nanomaterials, exhibit excellent biocompatibility, degradability, customizable surface properties, and novel physical and chemical properties. These nanomaterials hold great potential for development in achieving a sustainable bio-economy. This paper provides a summary of the latest research results on the preparation of nanomaterials from animal polysaccharides. The mechanism for preparing nanomaterials through the bottom-up method from different sources of animal polysaccharides is introduced. Furthermore, this paper discusses the potential hazards posed by industrial applications to the environment and human health, as well as the challenges and future prospects associated with using animal polysaccharides in nanomaterials.
Assuntos
Nanoestruturas , Polissacarídeos , Nanoestruturas/química , Animais , Polissacarídeos/química , Humanos , Quitosana/química , Sulfatos de Condroitina/químicaRESUMO
Objectives: Diquat poisoning is an important public health and social security agency. This study aimed to develop a prognostic model and evaluate the prognostic value of plasma diquat concentration in patients with acute oral diquat poisoning, focusing on how its impact changes over time after poisoning. Methods: This was a retrospective cohort study using electronic healthcare reports from the Second Hospital of Hebei Medical University. The study sample included 80 patients with acute oral Diquat poisoning who were admitted to the hospital between January 2019 and May 2022. Time-to-event analyses were performed to assess the risk of all-cause mortality (30 days and 90 days), controlling for demographics, comorbidities, vital signs, and other laboratory measurements. The prognostic value of plasma DQ concentration on admission was assessed by computing the area under a time-dependent receiver operating characteristic curve (ROC). Results: Among the 80 patients, 29 (36.25%) patients died, and 51 (63.75%) patients survived in the hospital. Non-survivors had a median survival time (IQR) of 1.3(1.0) days and the longest survival time of 4.5 days after DQ poisoning. Compared with non-survivors, survivors had significantly lower amounts of ingestion, plasma DQ concentration on admission, lungs injury within 24 h after admission, liver injury within 24 h after admission, kidney injury within 24 h after admission, and CNS injury within 36 h after admission, higher APACHE II score and PSS within 24 h after admission (all p < 0.05). Plasma Diquat concentration at admission (HR = Exp (0.032-0.059 × ln (t))) and PSS within 24 h after admission (HR: 4.470, 95%CI: 1.604 ~ 12.452, p = 0.004) were independent prognostic factors in the time-dependent Cox regression model. Conclusion: Plasma DQ concentration at admission and PSS within 24 h after admission are independent prognostic factors for the in-hospital case fatality rate in patients with acute oral DQ poisoning. The prognostic value of plasma DQ concentration decreased with time.
Assuntos
Diquat , Humanos , Estudos Retrospectivos , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Adulto , Diquat/sangue , Herbicidas/sangue , Herbicidas/intoxicação , ChinaRESUMO
BACKGROUND: For patients with acute paraplegia caused by spinal giant cell tumor (GCT) who require emergency decompressive surgery, there is still a lack of relevant reports on surgical options. This study is the first to present the case of an acute paraplegic patient with a thoracic spinal GCT who underwent an emergency total en bloc spondylectomy (TES). Despite tumor recurrence, three-level TES was repeated after denosumab therapy. CASE SUMMARY: A 27-year-old female patient who underwent single-level TES in an emergency presented with sudden severe back pain and acute paraplegia due to a thoracic spinal tumor. After emergency TES, the patient's spinal cord function recovered, and permanent paralysis was avoided. The postoperative histopathological examination revealed that the excised neoplasm was a rare GCT. Unfortunately, the tumor recurred 9 months after the first surgery. After 12 months of denosumab therapy, the tumor size was reduced, and tumor calcification. To prevent recurrent tumor progression and provide a possible cure, a three-level TES was performed again. The patient returned to an active lifestyle 1 month after the second surgery, and no recurrence of GCT was found at the last follow-up. CONCLUSION: This patient with acute paraplegia underwent TES twice, including once in an emergency, and achieved good therapeutic results. TES in emergency surgery is feasible and safe when conditions permit; however, it may increase the risk of tumor recurrence.
RESUMO
Hydroxychloroquine (HCQ) has gained significant attention as a therapeutic option for systemic lupus erythematosus (SLE) because of its multifaceted mechanism of action. It is a lipophilic, lysosomotropic drug, that easily traverses cell membranes and accumulates in lysosomes. Once accumulated, HCQ alkalizes lysosomes within the cytoplasm, thereby disrupting their function and interfering with processes like antigen presentation. Additionally, HCQ has shown potential in modulating T-cell responses, inhibiting cytokine production, and influencing Toll-like receptor signaling. Its immunomodulatory effects have generated interest in its application for autoimmune disorders. Despite its established efficacy, uncertainties persist regarding the optimal therapeutic concentrations and their correlation with adverse effects such as retinal toxicity. Therefore, standardized dosing and monitoring guidelines are crucial. In this study, we provide a comprehensive review of the mechanisms, efficacy, dosing variations, and retinal toxicity profiles of HCQ, which are essential to optimize SLE treatment protocols and ensure patient safety.
RESUMO
To explore the genetic causal association between pulmonary artery hypertension (PAH) and iron status through Mendelian randomization (MR), we conducted MR analysis using publicly available genome-wide association study (GWAS) summary data. Five indicators related to iron status (serum iron, ferritin, total iron binding capacity (TIBC), soluble transferrin receptor (sTfR), and transferrin saturation) served as exposures, while PAH was the outcome. The genetic causal association between these iron status indicators and PAH was assessed using the inverse variance weighted (IVW) method. Cochran's Q statistic was employed to evaluate heterogeneity. We assessed pleiotropy using MR-Egger regression and MR-Presso test. Additionally, we validated our results using the Weighted median, Simple mode, and Weighted mode methods. Based on the IVW method, we found no causal association between iron status (serum iron, ferritin, TIBC, sTfR, and transferrin saturation) and PAH (p ß > 0.05). The Weighted median, Simple mode, and Weighted mode methods showed no potential genetic causal association (p ß > 0.05 in the three analyses). Additionally, no heterogeneity or horizontal pleiotropy was detected in any of the analyses. Our results show that there are no genetic causal association between iron status and PAH.
RESUMO
Ferroptosis is a novel type of iron-dependent programmed cell death characterised by intracellular iron overload, increased lipid peroxidation and abnormal accumulation of reactive oxygen species.It has been implicated in the progression of several diseases including cancer, ischaemia-reperfusion injury, neurodegenerative diseases and liver disease. The etiology of endometriosis (EMS) is still unclear and is associated with multiple factors, often accompanied by various forms of cell death and a complex microenvironment. In recent decades, the role of non-traditional forms of cell death, represented by ferroptosis, in endometriosis has come to the attention of researchers. This article reviews the transitional role of iron homeostasis in the development of ferroptosis, the characteristics and regulatory mechanisms of ferroptosis, and focuses on summarising the links between iron death and various pathogenic mechanisms of EMS, including oxidative stress, dysregulation of lipid metabolism, inflammation, autophagy and epithelial-mesenchymal transition. The possible applications of ferroptosis in the treatment of EMS, future research directions and current issues are discussed with the aim of providing new ideas for further understanding of EMS.
Assuntos
Endometriose , Ferroptose , Ferro , Estresse Oxidativo , Ferroptose/fisiologia , Endometriose/patologia , Endometriose/metabolismo , Humanos , Feminino , Ferro/metabolismo , Estresse Oxidativo/fisiologia , Peroxidação de Lipídeos/fisiologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Autofagia/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Metabolismo dos Lipídeos/fisiologiaRESUMO
BACKGROUND: A higher incidence of herpes zoster (HZ) was found in people with decreased cell-mediated immunity. However, the relationship between cellular immunity and HZ infection in patients with autoimmune inflammatory rheumatic diseases (AIRD) remains elusive. OBJECTIVE: To investigate the role of CD4/CD8 ratio in patients with AIRD and HZ. METHODS: This case-control study compared AIRD patients with and without HZ. We chose 70 AIRD patients with HZ as the experimental group and 140 AIRD patients without HZ as the control group. The clinical and laboratory findings were assessed in each trial participant. RESULTS: The CD4/CD8 ratio (odds ratio [OR], 0.22; 95% confidence interval [CI], 0.10-0.49) was independently associated with the occurrence of HZ after adjusting for various confounders. Nonlinear analysis has unveiled a more profound nonlinear relationship between the CD4/CD8 ratio and the occurrence of HZ in patients with AIRD. The OR of HZ increased with a decreasing CD4/CD8 ratio before the turning point of 2. The adjusted regression coefficient was 0.14 (95% CI, 0.05-0.37, p<0.0001) for CD4/CD8 ratio less than 2. CONCLUSION: The CD4/CD8 ratio was expected to be a very promising quantitative biomarker for predicting the risk of developing HZ in patients with AIRD.