Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mater Horiz ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691105

RESUMO

In the quest for excellent light-structural materials that can withstand mechanical extremes for advanced applications, design and control of microstructures beyond current material design strategies have become paramount. Herein, we design a coherent shell at incoherent precipitates in the 2195 aluminum alloy with multi-step metastable phase transitions. A high local strain rate via a neoteric deformation-driven metallurgy method facilitated the diffusion of Li. The original T1 (Al2CuLi) phases were transformed into coherent-shell (Li-rich) irregular-coated incoherent-core (Al2Cu) precipitates. The ultimate tensile strength and elongation reached 620 ± 18 MPa and 22.3 ± 2.2%, exhibiting excellent strength-ductility synergy. Grain boundaries, dislocation, solid solution atoms, and precipitates all contributed to the yield strength of the materials, among which precipitates occupied a dominant position, contributing approximately 56.07%. A new "incoherent-coherent interact" strain-hardening mechanism was also clarified, which was believed to be promoted in other heat-treatable alloy systems, especially with multi-step metastable phase transitions.

2.
Materials (Basel) ; 17(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673187

RESUMO

To obtain high-quality joints of Al/steel dissimilar materials, a new extrinsic-riveting friction stir lap welding (ERFSLW) method was proposed combining the synthesis advantages of mechanical riveting and metallurgical bonding. SiC-reinforced Al matrix composite bars were placed in the prefabricated holes in Al sheets and steel sheets, arranged in a zigzag array. The bars were stirred and mixed with Al sheets under severe plastic deformation (SPD), forming composite rivets to strengthen the mechanical joining. SiC particles were uniformly dispersed in the lower part of the welding nugget zone (WNZ). The smooth transition between the SiC mixed zone and extrinsic-riveting zone (ERZ) ensured the metallurgical bonding. The maximum tensile shear load of the joints reached 7.8 kN and the maximum load of the weld per unit length was 497 N/mm. The fracture occurred at the interface between the rivets and steel sheets rather than the conventional Al/steel joining interface. Moreover, ERFSLW can prolong the service life of joints due to three fracture stages. This method can be further extended to the welding of other dissimilar materials that conform to the model of "soft/hard".

3.
Food Sci Technol Int ; 30(3): 239-250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36617793

RESUMO

Foodborne pathogens are a leading cause of mortality worldwide. Therefore, strategies focused on functional foods are urgently required to tackle this issue. As a result, camel milk is one of the most important traditional functional foods since it contains a variety of bioactive components, which all have antimicrobial activity against foodborne pathogens. The study aims to investigate the potential antimicrobial activity of raw camel milk against foodborne pathogens in both in vitro agar well diffusion and infected mice, especially Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli, particularly in societies that rely on consuming camel milk in its raw form. A total of eighty C57BL/6 mice were divided into ten groups and gavaged with or without camel milk for two consecutive weeks. A blood plasma analysis and serum insulin levels were measured. Histological investigations of the liver, pancreas, kidney, spleen, lung and testicles were also performed. In both in vivo and in vitro studies when compared to other pathogenic bacteria, E. coli was the most affected by raw camel milk, with a significant clear zone of 2.9 ± 0.13 cm in vitro and in all measured parameters in vivo (p < 0.05). As a result, we advocated for further research to improve camel breeding, raise milk yield and extend its reproductive capability as one of the most important farm animals.


Assuntos
Anti-Infecciosos , Listeria monocytogenes , Animais , Camundongos , Leite/microbiologia , Camelus , Escherichia coli , Alimento Funcional , Microbiologia de Alimentos
4.
J Agric Food Chem ; 71(49): 19791-19803, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38031933

RESUMO

In this study, a novel homogeneous mannose-rich polysaccharide named EPS-1 from the fermentation broth of Bifidobacterium breve H4-2 was isolated and purified by anion exchange column chromatography and gel column chromatography. The primary structure of EPS-1 was analyzed by high-performance liquid chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance. The results indicated that EPS-1 had typical functional groups of polysaccharides. EPS-1 with an average molecular weight of 3.99 × 104 Da was mainly composed of mannose (89.65%) and glucose (5.84%). The backbone of EPS-1 was →2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→6)-α-d-Glcp-(1→ simultaneously containing two kinds of branched chains (α-d-Manp-(1→3)-α-d-Manp-(1→ and α-d-Manp-(1→). Besides, EPS-1 had a triple-helical conformation and exhibited excellent thermal stability. Moreover, the immunomodulatory activity of EPS-1 was evaluated by RAW 264.7 cells. Results indicated that EPS-1 significantly enhanced the viability of RAW 264.7 cells. EPS-1 could also be recognized by toll-like receptor 4, thereby activating the nuclear factors-κB (NF-κB) signaling pathway, promoting phosphorylation of related nuclear transcription factors, improving cell phagocytic activity, and promoting the secretion of NO, IL-6, IL-1ß, and TNF-α. Thus, EPS-1 could activate the TLR4-NF-κB signaling pathway to emerge immunomodulatory activity on macrophages. The above results indicate that EPS-1 can serve as a potential immune-stimulating polysaccharide.


Assuntos
Bifidobacterium breve , Manose , Animais , Camundongos , Manose/metabolismo , Bifidobacterium breve/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Polissacarídeos/química , Macrófagos/metabolismo , Células RAW 264.7 , Peso Molecular
6.
Foods ; 12(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37372530

RESUMO

Multigrain products can prevent the occurrence of chronic noninfectious diseases such as hyperglycemia and hyperlipidemia. In this study, multigrain dough fermented by lactic acid bacteria (LAB) was used for the preparation of good-quality steamed multigrain bread, and its effects on type 2 diabetes were investigated. The results showed that the multigrain dough fermented with LAB significantly enhanced the specific volume, texture, and nutritional value of the steamed bread. The steamed multigrain bread had a low glycemic index and was found to increase liver glycogen and reduce triglyceride and insulin levels, while improving oral glucose tolerance and blood lipid levels in diabetic mice. The steamed multigrain bread made from dough fermented with LAB had comparable effects on type 2 diabetes to steamed multigrain bread prepared from dough fermented without LAB. In conclusion, multigrain dough fermentation with LAB improved the quality of the steamed bread while preserving its original efficacy. These findings provide a novel approach to the production of functional commercial foods.

7.
Phytopathology ; 113(10): 1934-1945, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37141175

RESUMO

Colletotrichum fungi are a group of damaging phytopathogens with atypical mating type loci (harboring only MAT1-2-1 but not MAT1-1-1) and complex sexual behaviors. Sex pheromones and their cognate G-protein-coupled receptors are conserved regulators of fungal mating. These genes, however, lose function frequently among Colletotrichum species, indicating a possibility that pheromone signaling is dispensable for Colletotrichum sexual reproduction. We have identified two putative pheromone-receptor pairs (PPG1:PRE2, PPG2:PRE1) in C. fructicola, a species that exhibits plus-to-minus mating type switching and plus-minus-mediated mating line development. Here, we report the generation and characterization of gene-deletion mutants for all four genes in both plus and minus strain backgrounds. Single-gene deletion of pre1 or pre2 had no effect on sexual development, whereas their double deletion caused self-sterility in both the plus and minus strains. Moreover, double deletion of pre1 and pre2 caused female sterility in plus-minus outcrossing. Double deletion of pre1 and pre2, however, did not inhibit perithecial differentiation or plus-minus-mediated enhancement of perithecial differentiation. Contrary to the results with pre1 and pre2, double deletion of ppg1 and ppg2 had no effect on sexual compatibility, development, or fecundity. We concluded that pre1 and pre2 coordinately regulate C. fructicola mating by recognizing novel signal molecule(s) distinct from canonical Ascomycota pheromones. The contrasting importance between pheromone receptors and their cognate pheromones highlights the complicated nature of sex regulation in Colletotrichum fungi.


Assuntos
Colletotrichum , Receptores de Feromônios , Receptores de Feromônios/genética , Feromônios/genética , Colletotrichum/genética , Doenças das Plantas , Reprodução , Fertilidade , Genes Fúngicos Tipo Acasalamento/genética , Proteínas Fúngicas/genética
8.
Phytopathology ; : PHYTO01230036R, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37069143

RESUMO

Apple Valsa canker (AVC) weakens apple trees and significantly reduces apple production in China and other East Asian countries. Thus far, very few AVC-targeting biocontrol resources have been described. Here, we present a thorough description of a fungal isolate (Chaetomium globosum, 61239) that has strong antagonistic action toward the AVC causal agent Cytospora mali. Potato dextrose broth culture filtrate of strain 61239 completely suppressed the mycelial growth of C. mali on potato dextrose agar, and strongly constrained the development of AVC lesions in in vitro infection assays. ultra-performance liquid chromatography (UPLC) and HPLC-MS/MS investigations supported the conclusion that strain 61239 produces chaetoglobosin A, an antimicrobial metabolite that inhibits C. mali. Using genome sequencing, we discovered a gene cluster in strain 61239 that may be responsible for chaetoglobosin A production. Two of the cluster's genes-cheA, a PKS-NRPS hybrid enzyme, and cheB, an enoyl reductase-were individually silenced, which significantly decreased chaetoglobosin A accumulation as well as the strain's antagonistic activity against C. mali. Together, the findings of our investigation illustrate the potential use of Chaetomium globosum for the management of AVC disease and emphasize the significant contribution of chaetoglobosin A to the antagonistic action of strain 61239.

9.
Food Funct ; 13(23): 12156-12169, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36326134

RESUMO

Probiotics have long been shown to modulate inflammatory bowel disease (IBD) in a variety of ways, and their major metabolites, short-chain fatty acids (SCFAs), have been shown to play a role in the alleviation of ulcerative colitis (UC). In the present study, DSS-treated C57BL/6J mice were gavaged with Bifidobacterium bifidum H3-R2, Propionibacterium freudenreichii B1 and Clostridium butyricum C1-6, which are capable of high production of acetic acid, propionic acid and butyric acid, respectively. We measured the effects of these three strains on inflammatory factors, intestinal barrier function, colitis-related signalling pathways, intestinal microbiome composition, and SCFA content in intestinal contents. The results of the experiment showed that all three strains differentially increased the colon length; reduced weight loss; decreased the splenic index; decreased the DAI scores and MPO activity; decreased proinflammatory factor levels (IL-8, IL-1ß and TNF-α); increased anti-inflammatory factor production (IL-10); and enhanced tight junction protein expression (ZO-1, occludin, and claudin-1). Moreover, Bifidobacterium bifidum H3-R2 and Propionibacterium freudenreichii B1 played crucial roles through TLRs/RHO kinase (ROCK1) and Wnt/ß-catenin pathways in these protective effects. In addition, three strains improved the composition of the intestinal flora and increased the production of SCFAs; notably, Propionibacterium freudenreichii B1 had the best effect. This study provides a scientific basis for the further application of probiotics in the treatment of UC in the future.


Assuntos
Bifidobacterium bifidum , Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Colite/induzido quimicamente , Colo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Bifidobacterium bifidum/metabolismo , Modelos Animais de Doenças
10.
Materials (Basel) ; 15(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36233931

RESUMO

The temperature and material flow gradients along the thick section of the weld seriously affect the welding efficiency of friction stir welding in medium-thick plates. Here, the effects of different gradients obtained by the two pins on the weld formation, microstructure, and mechanical properties were compared. The results indicated that the large-tip pin increases heat input and material flow at the bottom, reducing the gradient along the thickness. The large-tip pin increases the welding speed of defect-free joints from 100 mm/min to 500 mm/min compared to the small-tip pin. The ultimate tensile strength and elongation of the joint reached 247 MPa and 8.7%, equal to 80% and 65% of the base metal, respectively. Therefore, reducing the temperature and material flow gradients along the thickness by designing the pin structure is proved to be the key to improving the welding efficiency for thick plates.

11.
J Agric Food Chem ; 70(37): 11678-11688, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36095239

RESUMO

Bifidobacteria are important mediators of immune system development within the gastrointestinal system and immunological homeostasis. The present study explored the anti-colitic activity of Bifidobacterium bifidum H3-R2 in a murine dextran sulfate sodium (DSS)-induced model of ulcerative colitis (UC). Moreover, this study offers novel insight regarding the molecular basis for the probiotic properties of B. bifidum H3-R2 by analyzing the underlying mechanisms whereby B. bifidum H3-R2-derived proteins affect the intestinal barrier. B. bifidum H3-R2 administration was sufficient to alleviate clinical manifestations consistent with DSS-induced colitis, restoring aberrant inflammatory cytokine production, enhancing tight junction protein expression, and positively impacting overall intestinal microecological homeostasis in these animals. Moreover, the bifidobacteria-derived GroEL and transaldolase (TAL) proteins were found to regulate tight junction protein expression via the NF-κB, myosin light chain kinase (MLCK), RhoA/Rho-associated protein kinase (ROCK), and mitogen-activated protein kinase (MAPK) signaling pathways, preventing the lipopolysaccharide (LPS)-mediated disruption of the intestinal epithelial cell barrier.


Assuntos
Bifidobacterium bifidum , Colite Ulcerativa , Colite , Animais , Bifidobacterium/metabolismo , Bifidobacterium bifidum/genética , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transaldolase/metabolismo
12.
Nutrients ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145047

RESUMO

This study was designed to explore the different intestinal barrier repair mechanisms of Bifidobacterium breve (B. breve) H4-2 and H9-3 with different exopolysaccharide (EPS) production in mice with colitis. The lipopolysaccharide (LPS)-induced IEC-6 cell inflammation model and dextran sulphate sodium (DSS)-induced mice colitis model were used. Histopathological changes, epithelial barrier integrity, short-chain fatty acid (SCFA) content, cytokine levels, NF-κB expression level, and intestinal flora were analyzed to evaluate the role of B. breve in alleviating colitis. Cell experiments indicated that both B. breve strains could regulate cytokine levels. In vivo experiments confirmed that oral administration of B. breve H4-2 and B. breve H9-3 significantly increased the expression of mucin, occludin, claudin-1, ZO-1, decreased the levels of IL-6, TNF-α, IL-1ß and increased IL-10. Both strains of B. breve also inhibited the expression of the NF-κB signaling pathway. Moreover, B. breve H4-2 and H9-3 intervention significantly increased the levels of SCFAs, reduced the abundance of Proteobacteria and Bacteroidea, and increased the abundance of Muribaculaceae. These results demonstrate that EPS-producing B. breve strains H4-2 and H9-3 can regulate the physical, immune, and microbial barrier to repair the intestinal damage caused by DSS in mice. Of the two strains, H4-2 had a higher EPS output and was more effective at repair than H9-3. These results will provide insights useful for clinical applications and the development of probiotic products for the treatment of colitis.


Assuntos
Bifidobacterium breve , Colite , Microbioma Gastrointestinal , Animais , Bifidobacterium breve/metabolismo , Claudina-1/metabolismo , Colite/induzido quimicamente , Colite/terapia , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , NF-kappa B/metabolismo , Ocludina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
ACS Appl Mater Interfaces ; 14(36): 40959-40966, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36046979

RESUMO

Solid-state lithium batteries (SSLBs) based on Ta-doped Li6.5La3Zr1.5Ta0.5O12 (LLZTO) suffer from lithium dendrite growth, which hinders their practical application. Herein, first principles simulations indicate that the Ta element prefers to segregate along grain boundaries in the form of Ta2O5 precipitates due to a high energy difference induced by Ta doping. Grain boundary engineering is employed to regulate the distribution of the Ta element and enhance the density of LLZTO by introducing the La2O3 additive. The sufficient La2O3 additive reacts with the Ta2O5 precipitates, while the residual La2O3 nanoparticles fill up void defects, promoting the homogeneous distribution of the Ta element and improving the relative density to ∼98%. Critical current density of the symmetric Li battery reaches 2.12 mA·cm-2 at room temperature with the solid-state electrolyte (LLZTO + 5 wt % La2O3), which increases by 41% compared to pure LLZTO. SSLBs with the LiFePO4 cathode achieve a stable cycling performance with a discharge capacity of 138.6 mA·h·g-1 after 400 cycles at 0.2 C. This work provides theoretical insights into the distribution of Ta-doped LLZTO and inhibits lithium dendrite growth through grain boundary engineering.

14.
Materials (Basel) ; 15(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36013657

RESUMO

The medium-thick Al/Mg dissimilar friction stir welding (FSW) joint has serious groove and cavity defects due to uneven thermal distribution in the thickness direction. The submerged friction stir welding (SFSW) was employed to decrease the peak temperature of the joint and control the thermal gradient of the thickness direction, which were beneficial in suppressing the coarsening of the intermetallic compounds (IMCs) layer and improving the weld formation. According to the SEM results, the thickness value of the IMC layer in the nugget zone and shoulder affect zone decreased from 0.78 µm and 1.31 µm in FSW process to 0.59 µm and 1.21 µm in SFSW process at the same parameter, respectively. Compared with the FSW process, SFSW improves the thermal accumulation during the process, which inhibits the formation of the IMCs and facilitates the material flow to form a mechanical interlocking structure. This firm interface formation elevates the effective contact area of the whole joint interface and provides a strong connection between the dissimilar metals. Thus, the ultimate strength of the 6 mm thick Al/Mg dissimilar SFSW joints was enhanced to 171 MPa, equivalent to 71.3% of AZ31B Mg alloys strength.

15.
Front Microbiol ; 13: 943930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898909

RESUMO

Diabetes is a serious disease that threatens human health worldwide. The study hypothesis is to investigate the novel trends that may aid in the prevention of diabetic complications. Camel milk was presented as traditional functional food, and Lactobacillus brevis KLDS1.0727 and KLDS1.0373 strains were shown to synthesize postbiotic Gamma-aminobutyric acid as a potential food additive, which can therapeutically intervene against hyperglycemia and hyperlipidemia in streptozotocin-induced C57BL/6J mice. During a four-week timeframe, body weight and postprandial blood glucose levels were monitored. Post-euthanasia, blood plasma was obtained to investigate hyperlipidemia, insulin concentrations, liver, and renal functions. The liver, pancreas, kidney, and spleen underwent histopathological examinations. The results demonstrated that KLDS1.0727 and KLDS1.0373 (LACS1 , LACS2 ) and camel milk treatments all had a significant influence on hypoglycemic activity, as evidenced by reduced postprandial blood glucose levels. LACS1 , LACS2 , and camel milk therapy significantly reduced blood hypolipidemic, and some liver enzymes such as (alanine aminotransferase and aspartate transaminase) levels. Therefore, we recommend consuming camel milk regularly and expanding its use with fermented foods containing L. brevis, one of the probiotics capable of producing gamma-aminobutyric acid (GABA) as future food additives that can improve human health and reduce the prevalence of several diseases disorders.

16.
Adv Sci (Weinh) ; 9(23): e2104464, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35703130

RESUMO

The antagonism between strength and corrosion resistance in graphene-reinforced aluminum matrix composites is an inherent challenge to designing reliable structural components. Heteroatom microstructural modification is highly appreciated to conquer the obstacle. Here, a bottom-up strategy to exploit the heterogeneous phase interface to enable high corrosion durability is proposed. Deformation-driven metallurgy derived from severe plastic deformation is developed to produce Mg-alloyed fluorinated graphene structures with homogeneous dispersion. These structures allow for absorbing corrosion products, forming a dense protective layer against corrosion, and local micro-tuning of the suppression of charge transfer. This results in superior corrosion resistance with an outstanding strength-ductility balance of the composites via ultrafine-grained and precipitation strengthening. The anti-corrosion polarization resistance remains 89% of the initial state after 2-month immersion in chloride-containing environment, while the ultra-tensile strength and elongation of 532 ± 39 MPa and 17.3 ± 1.2% are obtained. The economical strategy of heteroatom modification broadens the horizon for anti-corrosion engineering in aluminum matrix composites, which is critical for the design of carbonaceous nanomaterial-reinforced composites to realize desired performances for practical applications.

17.
J Dairy Sci ; 105(6): 4818-4828, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35400500

RESUMO

The composition of the microbiome in the early stages of life can directly affect the health of developing infants, and prior evidence suggests that human milk oligosaccharides (HMO) are critical regulators in the maintenance of a healthy gut microbiota in infants. Herein, we conducted an analysis of the gut microbiota of 1-mo-old breastfed infants from Jining and Harbin, China, and a corresponding analysis of the HMO profiles in samples of maternal breast milk. Quantification of HMO was conducted via liquid chromatography-mass spectrometry, and bacterial DNA sequencing was employed for characterization of the fecal microbiota. The abundances of total neutral oligosaccharides, lactodifucotetraose, lacto-N-fucopentaose I, and disialyl-lacto-N-tetraose were significantly increased in samples from the Jining group relative to the Harbin group. Bifidobacterium were the predominant microbial species in infants from both Harbin and Jining, with these levels being significantly higher in the former set. Correlation analyses evaluating microbes and 19 different HMO indicated that HMO were beneficial to the development of the gut microbiota in young infants. The predominance of Bifidobacterium in these microbial communities suggests that their ability to efficiently utilize HMO can contribute to the homeostasis of the gut microflora, with breast milk-derived HMO being critical to the shaping of the gut microbiota in breastfed infants.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Animais , Bifidobacterium , Aleitamento Materno , Feminino , Microbioma Gastrointestinal/genética , Humanos , Leite Humano/química , Oligossacarídeos/análise
18.
World J Gastroenterol ; 27(28): 4722-4737, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34366632

RESUMO

BACKGROUND: Dysbacteriosis may be a crucial environmental factor for ulcerative colitis (UC). Further study is required on microbiota alterations in the gastrointestinal tract of patients with UC for better clinical management and treatment. AIM: To analyze the relationship between different clinical features and the intestinal microbiota, including bacteria and fungi, in Chinese patients with UC. METHODS: Eligible inpatients were enrolled from January 1, 2018 to June 30, 2019, and stool and mucosa samples were collected. UC was diagnosed by endoscopy, pathology, Mayo Score, and Montreal classification. Gene amplicon sequencing of 16S rRNA gene and fungal internal transcribed spacer gene was used to detect the intestinal microbiota composition. Alpha diversity, principal component analysis, similarity analysis, and Metastats analysis were employed to evaluate differences among groups. RESULTS: A total of 89 patients with UC and 33 non-inflammatory bowel disease (IBD) controls were enrolled. For bacterial analysis, 72 stool and 48 mucosa samples were obtained from patients with UC and 21 stool and 12 mucosa samples were obtained from the controls. For fungal analysis, stool samples were obtained from 43 patients with UC and 15 controls. A significant difference existed between the fecal and mucosal bacteria of patients with UC. The α-diversity of intestinal bacteria and the relative abundance of some families, such as Lachnospiraceae and Ruminococcaceae, decreased with the increasing severity of bowel inflammation, while Escherichia-Shigella showed the opposite trend. More intermicrobial correlations in UC in remission than in active patients were observed. The bacteria-fungi correlations became single and uneven in patients with UC. CONCLUSION: The intestinal bacteria flora of patients with UC differs significantly in terms of various sample types and disease activities. The intermicrobial correlations change in patients with UC compared with non-IBD controls.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , China/epidemiologia , Colite Ulcerativa/diagnóstico , Disbiose , Fezes , Humanos , Mucosa Intestinal , RNA Ribossômico 16S/genética
19.
ACS Appl Mater Interfaces ; 13(29): 34385-34396, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34282881

RESUMO

Solid-state lithium batteries (SSLBs) based on garnet-type solid-state electrolytes (SSEs) have attracted much attention due to their high energy density and chemical stability. However, poor room-temperature ionic conductivity and low density of SSEs induced by conventional preparation routes limit their potential future applications. In this work, an oriented attachment strategy is employed to enhance the Li-ion conductivity and density of garnet-type SSE Li6.5La3Zr1.5Ta0.5O12 by introducing La2O3 nanoparticles. The oriented attachment of the ZrO2(Ta2O5) matrix mediates the epitaxial growth of the La-Zr(Ta)-O intermediate phase due to the addition of La2O3 nanoparticles. Continuous Li-ion transport pathways along grain boundaries are produced by the combination of residual La2O3 and gas Li2O. A densification interface is obtained when 10 wt % La2O3 is doped. The maximum value of Li-ion conductivity reaches 8.20 × 10-4 S·cm-1, with a relative density of 97.3%. SSLBs with a LiFePO4 cathode showing a stable cycling performance with a discharge capacity of 123.1 mA·h·g-1 and a Coulombic efficiency of 99.2% after 300 cycles (0.5C) at room temperature. This work is comparable to the state-of-the-art methodology, which provides a feasible approach to creating SSEs with high performances for SSLBs.

20.
ACS Appl Mater Interfaces ; 13(27): 32161-32174, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185498

RESUMO

Deformation-driven metallurgy was implemented to prepare graphene nanoplatelet (GNP)-reinforced aluminum matrix composites with a time-dependent self-enhancement in corrosion resistance. Severe plastic deformation contributed to the sufficient brokenness, thinning, enfolding, and redispersion of GNPs, as well as grain refinement. The homogeneously dispersed GNPs showed a great corrosion inhibition mechanism in a chloride-containing environment, ascribed to the formation of a carbon-doped protective film via diffusion and chemical bonding between GNPs and the surface oxide film. Electrochemical and intergranular corrosion tests were conducted to show the enhancement of long-term corrosion resistance. First-principles calculations were performed to explore the high corrosion resistance of the carbon-doped protective film. The energy barriers of vacancy formation, Cl ingress, and charge transfer were synchronously enhanced with the addition of GNPs into aluminum matrix composites as long-term corrosion inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA