Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Acta Pharmacol Sin ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641746

RESUMO

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.

2.
Acta Pharmacol Sin ; 45(2): 354-365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37845343

RESUMO

Acute liver injury (ALI) is a complex, life-threatening inflammatory liver disease, and persistent liver damage leads to rapid decline and even failure of liver function. However, the pathogenesis of ALI is still not fully understood, and no effective treatment has been discovered. Recent evidence shows that many circular RNAs (circRNAs) are associated with the occurrence of liver diseases. In this study we investigated the mechanisms of occurrence and development of ALI in lipopolysaccharide (LPS)-induced ALI mice. We found that expression of the circular RNA circDcbld2 was significantly elevated in the liver tissues of ALI mice and LPS-treated RAW264.7 cells. Knockdown of circDcbld2 markedly alleviates LPS-induced inflammatory responses in ALI mice and RAW264.7 cells. We designed and synthesized a series of hesperidin derivatives for circDcbld2, and found that hesperetin derivative 2a (HD-2a) at the concentrations of 2, 4, 8 µM effectively inhibited circDcbld2 expression in RAW264.7 cells. Administration of HD-2a (50, 100, 200 mg/kg. i.g., once 24 h in advance) effectively relieved LPS-induced liver dysfunction and inflammatory responses. RNA sequencing analysis revealed that the anti-inflammatory and hepatoprotective effects of HD-2a were mediated through downregulating circDcbld2 and suppressing the JAK2/STAT3 pathway. We conclude that HD-2a downregulates circDcbld2 to inhibit the JAK2/STAT3 pathway, thereby inhibiting the inflammatory responses in ALI. The results suggest that circDcbld2 may be a potential target for the prevention and treatment of ALI, and HD-2a may have potential as a drug for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Hesperidina , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Hesperidina/efeitos adversos , Regulação para Baixo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Fígado/metabolismo
3.
Hepatology ; 79(2): 392-408, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37409771

RESUMO

BACKGROUND AND AIMS: The common characteristics of alcohol-associated liver injury (ALI) include abnormal liver function, infiltration of inflammatory cells, and generation of oxidative stress. The gastrin-releasing peptide receptor (GRPR) is activated by its neuropeptide ligand, gastrin-releasing peptide (GRP). GRP/GRPR appears to induce the production of cytokines in immune cells and promotes neutrophil migration. However, the effects of GRP/GRPR in ALI are unknown. APPROACH AND RESULTS: We found high GRPR expression in the liver of patients with alcohol-associated steatohepatitis and increased pro-GRP levels in peripheral blood mononuclear cells of these patients compared with that of the control. Increased expression of GRP may be associated with histone H3 lysine 27 acetylation induced by alcohol, which promotes the expression of GRP and then GRPR binding. Grpr-/- and Grprflox/floxLysMCre mice alleviated ethanol-induced liver injury with relieved steatosis, lower serum alanine aminotransferase, aspartate aminotransferase, triglycerides, malondialdehyde, and superoxide dismutase levels, reduced neutrophil influx, and decreased expression and release of inflammatory cytokines and chemokines. Conversely, the overexpression of GRPR showed opposite effects. The pro-inflammatory and oxidative stress roles of GRPR might be dependent on IRF1-mediated Caspase-1 inflammasome and NOX2-dependent reactive oxygen species pathway, respectively. In addition, we verified the therapeutic and preventive effects of RH-1402, a novel GRPR antagonist, for ALI. CONCLUSIONS: A knockout or antagonist of GRPR during excess alcohol intake could have anti-inflammatory and antioxidative roles, as well as provide a platform for histone modification-based therapy for ALI.


Assuntos
Inflamassomos , Receptores da Bombesina , Humanos , Camundongos , Animais , Receptores da Bombesina/metabolismo , Inflamassomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 1/metabolismo , Leucócitos Mononucleares , Peptídeo Liberador de Gastrina/metabolismo , Etanol , Fígado/metabolismo , Citocinas/metabolismo , Fator Regulador 1 de Interferon/metabolismo
4.
Phytomedicine ; 123: 155252, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056145

RESUMO

BACKGROUND: Acute kidney injury (AKI) has high morbidity and mortality, which is manifested by inflammation and apoptosis. Effective treatment methods for AKI are currently lacking. OBJECTIVE: This study demonstrated the protecting effects of Madecassoside (MA) in the cisplatin- and hypoxia-reoxygenation-induced renal tubular epithelial cells in vitro and AKI mice in vivo. METHODS: In vivo AKI mouse models were established by inducing them with cisplatin and renal ischemia-reperfusion. In vitro injury models of mouse renal tubular epithelial cells were established by inducing them with cisplatin and hypoxia and reoxygenation, respectively. The mechanism of MA effects was further explored using molecular docking and RNA-sequencing. RESULTS: MA could significantly reduce kidney injury in the cisplatin-and renal ischemia-reperfusion (IRI)-induced AKI. Further validation in the two cellular models also showed that MA had protect effects. MA can alleviate AKI in vitro and in vivo by inhibiting inflammation, cell apoptosis, and oxidative stress. MA exhibited high permeability across the Caco-2 cell, can enter cells directly. Through RNA-seq and molecular docking analysis, this study further demonstrated that MA inhibits its activity by directly binding to JNK kinase, thereby inhibiting c-JUN mediated cell apoptosis and improving AKI. In addition, MA has better renal protective effects compared to curcumin and JNK inhibitor SP600125. CONCLUSION: The results demonstrate that MA might be a potential drug for the treatment of AKI and act through the JNK/c-JUN signaling pathway.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Triterpenos , Humanos , Camundongos , Animais , Cisplatino/efeitos adversos , Células CACO-2 , Simulação de Acoplamento Molecular , Injúria Renal Aguda/induzido quimicamente , Apoptose , Rim , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia , Inflamação/metabolismo , Hipóxia , Camundongos Endogâmicos C57BL
5.
Acta Pharmacol Sin ; 45(4): 661-673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38102221

RESUMO

Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.


Assuntos
Metilação de DNA , Nefropatias , Metilação de RNA , Humanos , Progressão da Doença , Epigênese Genética , Histonas/metabolismo , Nefropatias/genética , Nefropatias/metabolismo
6.
Biochem Pharmacol ; 218: 115901, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084678

RESUMO

The gastrin-releasing peptide receptor (GRPR) binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. In this study, we investigated the therapeutic effect of a novel gastrin-releasing peptide receptor antagonist RH-1402 in hyperuricemia-induced kidney fibrosis and its underlying mechanisms. We conducted enzyme linked immunosorbent assay (ELISA) and immunohistochemical analyses and found that proGRP and GRPR expression levels were significantly increased in patients with hyperuricemic nephropathy (HN) and HN mice. GRPR knockdown significantly attenuated inflammatory and fibrotic responses in adenosine-treated human proximal tubule epithelial cells. GRPR knockout or GRPR conditional knockout in renal tubular epithelial cells significantly alleviated the decline in renal function and fibrosis in HN mice in vivo. RNA-seq and String database analysis revealed that GRP/GRPR promoted HN by suppressing the ABCG2/PDZK1 and increasing TGF-ß/Smad3 levels by activating the NF-κB pathway. Overexpression of GRPR increased TGF-ß/Smad3 levels, where as it reduced ABCG2/PDZK1 levels in adenosine-treated HK2 cells, which was reversed by the NF-κB inhibitor. Furthermore, we evaluated the therapeutic effects of the novel GRPR inhibitor RH-1402 on hyperuricaemia-induced renal injury and evaluated the inflammatory and fibrosis responses in vivo and in vitro. Pre-treatment with RH-1402 attenuated hyperuricaemia-induced renal injury, restored renal function, and suppressed renal inflammation and fibrosis. Taken together, GRPR enhances hyperuricaemia-induced tubular injury, inflammation, and renal fibrosis via ABCG2-dependent mechanisms and may serve as a promising therapeutic target for HN treatment.


Assuntos
Hiperuricemia , Nefropatias , Nefrite , Animais , Humanos , Camundongos , Adenosina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fibrose , Hiperuricemia/tratamento farmacológico , Inflamação , Nefropatias/etiologia , Proteínas de Neoplasias/metabolismo , Nefrite/etiologia , NF-kappa B/metabolismo , Receptores da Bombesina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
7.
Pharmacol Res ; 197: 106950, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820854

RESUMO

Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.


Assuntos
Nefropatias , Humanos , Acetilação , Nefropatias/tratamento farmacológico , Rim , Epigênese Genética , Epigenômica
8.
Clin Transl Med ; 13(8): e1359, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537731

RESUMO

BACKGROUND: N6 -methyladenosine (m6A) is of great importance in renal physiology and disease progression, but its function and mechanism in renal fibrosis remain to be comprehensively and extensively explored. Hence, this study will explore the function and potential mechanism of critical regulator-mediated m6A modification during renal fibrosis and thereby explore promising anti-renal fibrosis agents. METHODS: Renal tissues from humans and mice as well as HK-2 cells were used as research subjects. The profiles of m6A modification and regulators in renal fibrosis were analysed at the protein and RNA levels using Western blotting, quantitative real-time polymerase chain reaction and other methods. Methylation RNA immunoprecipitation sequencing and RNA sequencing coupled with methyltransferase-like 3 (METTL3) conditional knockout were used to explore the function of METTL3 and potential targets. Gene silencing and overexpression combined with RNA immunoprecipitation were performed to investigate the underlying mechanism by which METTL3 regulates the Ena/VASP-like (EVL) m6A modification that promotes renal fibrosis. Molecular docking and virtual screening with in vitro and in vivo experiments were applied to screen promising traditional Chinese medicine (TCM) monomers and explore their mechanism of regulating the METTL3/EVL m6A axis and anti-renal fibrosis. RESULTS: METTL3 and m6A modifications were hyperactivated in both the tubular region of fibrotic kidneys and HK-2 cells. Upregulated METTL3 enhanced the m6A modification of EVL mRNA to improve its stability and expression in an insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2)-dependent manner. Highly expressed EVL binding to Smad7 abrogated the Smad7-induced suppression of transforming growth factor-ß (TGF-ß1)/Smad3 signal transduction, which conversely facilitated renal fibrosis progression. Molecular docking and virtual screening based on the structure of METTL3 identified a TCM monomer named isoforsythiaside, which inhibited METTL3 activity together with the METTL3/EVL m6A axis to exert anti-renal fibrosis effects. CONCLUSIONS: Collectively, the overactivated METTL3/EVL m6A axis is a potential target for renal fibrosis therapy, and the pharmacological inhibition of METTL3 activity by isoforsythiaside suggests that it is a promising anti-renal fibrosis agent.


Assuntos
Metiltransferases , RNA , Animais , Humanos , Camundongos , Fibrose , Metiltransferases/genética , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , RNA Mensageiro/genética , Proteínas de Ligação a RNA
9.
Mol Ther ; 31(10): 3084-3103, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37533255

RESUMO

Hypertension is a primary modifiable risk factor for cardiovascular diseases, which often induces renal end-organ damage and complicates chronic kidney disease (CKD). In the present study, histological analysis of human kidney samples revealed that hypertension induced mtDNA leakage and promoted the expression of stimulator of interferon genes (STING) in renal epithelial cells. We used angiotensin II (AngII)- and 2K1C-treated mouse kidneys to elucidate the underlying mechanisms. Abnormal renal mtDNA packing caused by AngII promoted STING-dependent production of inflammatory cytokines, macrophage infiltration, and a fibrogenic response. STING knockout significantly decreased nuclear factor-κB activation and immune cell infiltration, attenuating tubule atrophy and extracellular matrix accumulation in vivo and in vitro. These effects delayed CKD progression. Immunoprecipitation assays and liquid chromatography-tandem mass spectrometry showed that STING and ACSL4 were directly combined at the D53 and K412 amino acids of ACSL4. Furthermore, STING induced renal inflammatory response and fibrosis through ACSL4-dependent ferroptosis. Last, inhibition of ACSL4 using small interfering RNA, rosiglitazone, or Fer-1 downregulated AngII-induced mtDNA-STING-dependent renal inflammation. These results suggest that targeting the STING/ACSL4 axis might represent a potential strategy for treating hypertension-associated CKD.

10.
Int J Biol Macromol ; 248: 125811, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467831

RESUMO

Circular RNA (circRNA) has been implicated in liver fibrosis and modulated by multiple elusive molecular mechanisms, while the effects of N6-methyladenosine (m6A) modification on circRNA are still elusive. Herein, we identify circIRF2 from our circRNA sequencing data, which decreased in liver fibrogenesis stage and restored in resolution stage, indicating that dysregulated circIRF2 may be closely associated with liver fibrosis. Gain/loss-of-function analysis was performed to evaluate the effects of circIRF2 on liver fibrosis at both the fibrogenesis and resolution in vivo. Ectopic expression of circIRF2 attenuated liver fibrogenesis and HSCs activation at the fibrogenesis stage, whereas downregulation of circIRF2 impaired mouse liver injury repair and inflammation resolution. Mechanistically, YTHDF2 recognized m6A-modified circIRF2 and diminished circIRF2 stability, partly accounting for the decreased circIRF2 in liver fibrosis. Microarray was applied to investigate miRNAs regulated by circIRF2, our data elucidate cytoplasmic circIRF2 may directly harbor miR-29b-1-5p and competitively relieve its inhibitory effect on FOXO3, inducing FOXO3 nuclear translocation and accumulation. Clinically, circIRF2 downregulation was prevalent in liver fibrosis patients compared with healthy individuals. In summary, our findings offer a novel insight into m6A modification-mediated regulation of circRNA and suggest that circIRF2 may be an exploitable prognostic marker and/or therapeutic target for liver fibrosis.


Assuntos
MicroRNAs , RNA Circular , Camundongos , Animais , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Proteína Forkhead Box O3/genética , Proteínas de Ligação a RNA/metabolismo
11.
Mol Ther ; 31(9): 2734-2754, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415332

RESUMO

Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Animais , Camundongos , Cisplatino/efeitos adversos , Necroptose , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
12.
Biomed Pharmacother ; 165: 115166, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473682

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Nefrite Lúpica , Humanos , Fator de Transcrição STAT3/metabolismo , Rim/patologia , Nefrite Lúpica/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia
13.
Br J Pharmacol ; 180(20): 2641-2660, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37248964

RESUMO

BACKGROUND AND PURPOSE: Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms. EXPERIMENTAL APPROACH: The effects of Cpd-42 were determined in vivo through cisplatin- and ischaemia/reperfusion (I/R)-induced acute kidney injury and in vitro through cisplatin- and hypoxia/re-oxygenation (H/R)-induced cell damage. Transmission electron microscopy and periodic acid-Schiff staining were used to identify renal pathology. Cellular thermal shift assay and RIPK3-knockout mouse renal tubule epithelial cells were used to explore the relationship between Cpd-42 and RIPK3. Molecular docking and site-directed mutagenesis were used to determine the binding site of RIPK3 with Cpd-42. KEY RESULTS: Cpd-42 reduced human proximal tubule epithelial cell line (HK-2) cell damage, necroptosis and inflammatory responses in vitro. Furthermore, in vivo, cisplatin- and I/R-induced acute kidney injury was alleviated by Cpd-42 treatment. Cpd-42 inhibited necroptosis by interacting with two key hydrogen bonds of RIPK3 at Thr94 and Ser146, which further blocked the phosphorylation of RIPK3 and mitigated acute kidney injury. CONCLUSION AND IMPLICATIONS: Acting as a novel RIPK3 inhibitor, Cpd-42 reduced kidney damage, inflammatory response and necroptosis in acute kidney injury by binding to sites Thr94 and Ser146 on RIPK3. Cpd-42 could be a promising treatment for acute kidney injury.


Assuntos
Injúria Renal Aguda , Cisplatino , Camundongos , Animais , Humanos , Cisplatino/farmacologia , Necroptose , Simulação de Acoplamento Molecular , Injúria Renal Aguda/metabolismo , Proteínas Quinases/metabolismo , Camundongos Knockout , Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores
14.
Biomed Pharmacother ; 161: 114497, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933382

RESUMO

The gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptors (GPCRs), binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. GRP/GRPR signalling is involved in the pathophysiological processes of many diseases, including inflammatory diseases, cardiovascular diseases, neurological diseases, and various cancers. In the immune system, the unique function of GRP/GRPR in neutrophil chemotaxis suggests that GRPR can be directly stimulated through GRP-mediated neutrophils to activate selective signalling pathways, such as PI3K, PKC, and MAPK, and participate in the occurrence and development of inflammation-related diseases. In the cardiovascular system, GRP increases intercellular adhesion molecule 1 (ICAM-1) and induces vascular cell adhesion molecule-1 (VCAM-1). GRP activates ERK1/2, MAPK, and AKT, leading to cardiovascular diseases, including myocardial infarction. Central nervous system signal transduction mediated by the GRP/GRPR axis plays a vital role in emotional responses, social interaction, and memory. The GRP/GRPR axis is elevated in various cancers, including lung, cervical, colorectal, renal cell, and head and neck squamous cell carcinomas. GRP is a mitogen in a variety of tumour cell lines. Its precursor, pro-gastrin-releasing peptide (ProGRP), may play an important role as an emerging tumour marker in early tumour diagnosis. GPCRs serve as therapeutic targets for drug development, but their function in each disease remains unclear, and their involvement in disease progression has not been well explored or summarised. This review lays out the above mentioned pathophysiological processes based on previous research conclusions. The GRP/GRPR axis may be a potential target for treating multiple diseases, and the study of this signalling axis is particularly important.


Assuntos
Doenças Cardiovasculares , Receptores da Bombesina , Humanos , Receptores da Bombesina/metabolismo , Peptídeo Liberador de Gastrina , Transdução de Sinais , Linhagem Celular Tumoral
15.
Life Sci ; 312: 121182, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435226

RESUMO

AIMS: Treating hepatic fibrosis (HF) is a major challenge worldwide. However, the biological functions and regulatory mechanisms of circular RNAs (circRNAs) remain unclear in HF. The present study aimed to elucidate the novel role of circMcph1 in HF. MAIN METHODS: HF mouse model was established by injecting CCl4 intraperitoneally and validated using hematoxylin and eosin staining, immunohistochemistry, and serological tests in vivo. RAW264.7 cells were treated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) in vitro inflammatory damage model. Gel electrophoresis, DNA sequencing, RNase R and actinomycin D treatment, random 6 primers and oligo dT primers assay, nuclear and cytoplasmic fractionation assay, and fluorescence in situ hybridization were performed to identify the characteristics of circMcph1. Functional assays such as ELISA, flow cytometry, and adeno-associated virus administration in vivo and liposome delivery gene therapy in vitro were used to determine the functional effects of circMcph1/miR-370-3p/interleukin-1 receptor-associated kinase 2 (Irak2) axis. Mechanistic assays such as luciferase reporter analysis, and chromatin immunoprecipitation revealed the molecular mechanism of the Myc/circMcph1/miR-370-3p/Irak2 axis in HF. KEY FINDINGS: CircMcph1 expression was upregulated in liver tissues and primary Kupffer cells of CCl4-induced HF mice, as well as in LPS and IFN-γ-treated RAW264.7 cells. Knockdown of circMcph1 ameliorated liver fibrogenesis and inflammatory damage in HF mice and reduced the inflammatory response in LPS and IFN-γ-treated RAW264.7 cells. Mechanically, circMcph1 mediated by Myc regulated the expression of Irak2 by sponging miR-370-3p in HF. SIGNIFICANCE: The study findings suggested that the Myc/circMcph1/miR-370-3p/Irak2 axis might be a novel identifier and therapeutic target for HF.


Assuntos
MicroRNAs , RNA Circular , Camundongos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hibridização in Situ Fluorescente , Lipopolissacarídeos/toxicidade , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Proliferação de Células/genética
16.
Br J Pharmacol ; 180(1): 5-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36196023

RESUMO

Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.


Assuntos
Injúria Renal Aguda , Carcinoma de Células Renais , Neoplasias Renais , Humanos , RNA , RNA Mensageiro
17.
Front Immunol ; 13: 1015142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405700

RESUMO

Diabetic nephropathy (DN) is the most common chronic kidney disease. Accumulation of glucose and metabolites activates resident macrophages in kidneys. Resident macrophages play diverse roles on diabetic kidney injuries by releasing cytokines/chemokines, recruiting peripheral monocytes/macrophages, enhancing renal cell injuries (podocytes, mesangial cells, endothelial cells and tubular epithelial cells), and macrophage-myofibroblast transition. The differentiation and cross-talks of macrophages ultimately result renal inflammation and fibrosis in DN. Emerging evidence shows that targeting macrophages by suppressing macrophage activation/transition, and macrophages-cell interactions may be a promising approach to attenuate DN. In the review, we summarized the diverse roles of macrophages and the cross-talks to other cells in DN, and highlighted the therapeutic potentials by targeting macrophages.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Rim/metabolismo , Diabetes Mellitus/metabolismo
18.
Biomed Pharmacother ; 156: 113807, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242850

RESUMO

Since the end of 2019, the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has triggered a pneumonia epidemic, posing a significant public health challenge in 236 countries, territories, and regions worldwide. Clinically, in addition to the symptoms of pulmonary infection, many patients with SARS-CoV-2 infections, especially those with a critical illness, eventually develop multiple organ failure in which damage to the kidney function is common, ultimately leading to severe consequences such as increased mortality and morbidity. To date, three coronaviruses have set off major global public health security incidents: Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2. Among the diseases caused by the coronaviruses, the coronavirus disease 2019 (COVID-19) has been the most impactful and harmful. Similar to with SARS-CoV-2 infections, previous studies have shown that kidney injury is also common and prominent in patients with the two other highly pathogenic coronaviruses. Therefore, in this review, we aimed to comprehensively summarize the epidemiological and clinical characteristics of these three pandemic-level infections, provide a deep analysis of the potential mechanism of COVID-19 in various types of kidney diseases, and explore the causes of secondary kidney diseases of SARS-CoV-2, so as to provide a reference for further research and the clinical prevention of kidney damage caused by coronaviruses.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Pandemias , Rim
19.
Biochem Pharmacol ; 204: 115240, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070847

RESUMO

Chronic kidney disease (CKD) is an increasing public health concern, characterized by a reduced glomerular filtration rate and increased urinary albumin excretion. Renal fibrosis is an important pathological condition in patients with CKD. In this study, we evaluated the anti-fibrotic effect of Cpd-0225, a novel transforming growth factor-ß (TGF-ß) type I receptor (also known as ALK5) inhibitor, in vitro and in vivo, by comparing its effect with that of SB431542, a classic ALK5 inhibitor, which has not entered the clinical trial stage owing to multiple side effects. Our data showed that Cpd-0225 attenuated fibrotic response in TGF-ß1-stimulated human kidney tubular epithelial cells and repeated hypoxia/reoxygenation-treated mouse tubular epithelial cells. We further confirmed that Cpd-0225 improved renal tubular injury and ameliorated collagen deposition in unilateral ureteral obstruction-, ischemia/reperfusion-, and aristolochic acid-induced mouse models of renal fibrosis. In addition, molecular docking and site-directed mutagenesis showed that Cpd-0225 exerted a higher reno-protective effect than SB431542, by physically binding to the key amino acid residues, Lys232 and Lys335 of ALK5, thereby suppressing the phosphorylation of Smad3 and ERK1/2. Taken together, these findings suggest that Cpd-0225 administration attenuates renal fibrosis via ALK5-dependent mechanisms and displays a more effective therapeutic effect than SB431542. Thus, Cpd-0225 may serve as a potential therapeutic agent for the treatment of CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Albuminas/metabolismo , Albuminas/farmacologia , Aminoácidos/metabolismo , Animais , Benzamidas , Colágeno/metabolismo , Dioxóis , Fibrose , Humanos , Rim/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
20.
Environ Int ; 169: 107499, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087379

RESUMO

Whilst certain environmental organochlorine pesticide exposure may still pose significant burden, the associations between dichloro-diphenyl-trichloroethane (DDT) and chronic kidney disease (CKD) remain disputable notwithstanding the potentially inaccurate disease definition between age groups. National DDT exposure burden atlas was depicted from 92,061 participants by measuring their serum concentrations of DDT congeners and major metabolite in the US from 1999 to 2016. Temporal analyses of these toxicant exposure suggested that although serum DDT concentrations exhibited recent decline, the detection rates remain up to 99.8% every year, posing great concern for exposure risk. A total of 3,039 US adults were further included from these participants demonstrating the weighted CKD prevalence of 40.2% using the new age-adapted CKD-EPI40 model compared to 28.0% using the current CKD-EPI method. After adjustment for covariates, logistic regression model results showed individual metabolites and total DDT burden were positively, yet monotonically, associated with risk of CKD incidence (P-trend for all < 0.05), particularly among adults 40 years of age and older. Much heightened renal disease risk was also observed with high DDT exposure (OR, 1.55; 95 % CI, 1.11-2.15) in those who were hypertensive (P for heterogeneity < 0.001) but not with diabetes. The current high DDT exposure risk combined with elevated probability for CKD incidence call for health concerns and management for the environmentally persistent pollutants.


Assuntos
Poluentes Ambientais , Inseticidas , Praguicidas , Insuficiência Renal Crônica , Adulto , Compostos de Bifenilo , DDT , Humanos , Inseticidas/análise , Organofosfatos , Compostos Organofosforados , Praguicidas/efeitos adversos , Praguicidas/análise , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Tricloroetanos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA