Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Medicine (Baltimore) ; 103(19): e38169, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728450

RESUMO

We investigated the correlation of orthostatic hypotension (OH) in Parkinson disease (PD) with the disease course and severity, and its possible impact on quality of life. 171 PD patients were recruited and divided into the PD-NOH (n = 91) and PD-OH groups (n = 80). Clinical data were collected. The severity and quality of life of PD patients were evaluated. The impact of disease severity was analyzed using logistic regression analysis. The ROC curve was plotted. There were significant differences (P < .05) between PD-NOH and PD-OH groups in terms of the disease course, non-motor symptoms (somnipathy), Hoehn&Yahr stage, LEDD score, RBDSQ score, PDQ-39 score, MMSE score, MoCA, MDS-UPDRS Part III scores during off- and on-periods, and NMSS score. Hoehn&Yahr stage (OR 4.950, 95% CI 1.516-16.157, P = .008) was closely associated with the risk of OH in PD. PDQ-39 score (OR 1.079, 95% CI 1.033-1.127, P = .001) in PD patients with OH further decreased. Patients with PD-OH experienced severe impairment in 4 dimensions of quality of life, including motor function, cognitive function, physical discomfort, and activities of daily living. Different clinical symptoms of PD-OH were positively correlated with PDQ39 subscales. The area under the ROC curve of the Hoehn&Yahr stage in predicting the occurrence of OH was 0.679 (95% CI 0.600-0.758), and that of the Hoehn&Yahr stage combined with levodopa equivalent dose, and MDS-UPDRS Part III score during off-period was 0.793 (95% CI 0.727-0.862). Higher Hoehn&Yahr stage is associated with increased risk of OH in PD patients, and deteriorated quality of life of PD patients. Patients with different OH symptoms are affected in different dimensions of their quality of life. The Hoehn & Yahr stage can independently predict the risk of OH in PD patients.


Assuntos
Hipotensão Ortostática , Doença de Parkinson , Qualidade de Vida , Índice de Gravidade de Doença , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/psicologia , Doença de Parkinson/fisiopatologia , Hipotensão Ortostática/etiologia , Hipotensão Ortostática/epidemiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Progressão da Doença
2.
Angew Chem Int Ed Engl ; : e202403610, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721714

RESUMO

Nonradiative recombination losses occurring at the interface pose a significant obstacle to achieve high-efficiency perovskite solar cells (PSCs), particularly in inverted PSCs. Passivating surface defects using molecules with different functional groups represents one of the key strategies for enhancing PSCs efficiency. However, a lack of insight into the passivation orientation of molecules on the surface is a challenge for rational molecular design. In this study, aminothiol hydrochlorides with different alkyl chains but identical electron-donating (-SH) and electron-withdrawing (-NH3+) groups were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2-Aminoethane-1-thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientations, which facilitating stronger interactions with the surface defects through strong coordination and hydrogen bonding. The resultant perovskite films following defect passivation demonstrate reduced ion migration, inhibition of nonradiative recombination, and more n-type characteristics for efficient electron transfer. Consequently, an impressive power conversion efficiency of 25% was achieved, maintaining 95% of its initial efficiency after 500 hours of continuous maximum power point tracking.

3.
Adv Mater ; : e2400852, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579292

RESUMO

Despite rapid advancements in the photovoltaic efficiencies of perovskite solar cells (PSCs), their operational stability remains a significant challenge for commercialization. This instability mainly arises from light-induced halide ion migration and subsequent oxidation into iodine (I2). The situation is exacerbated when considering the heat effects at elevated temperatures, leading to the volatilization of I2 and resulting in irreversible device degradation. Mercaptoethylammonium iodide (ESAI) is thus incorporated into perovskite as an additive to inhibit the oxidation of iodide anion (I-) and  the light-induced degradation pathway of FAPbI3→FAI+PbI2. Additionally, the formation of a thiol-disulfide/I--I2 redox pair within the perovskite film provides a dynamic mechanism for the continuous reduction of I2 under light and thermal stresses, facilitating the healing of iodine-induced degradations. This approach significantly enhances the operational stability of PSCs. Under the ISOS-L-3 testing protocol (maximum power point (MPP) tracking in an environment with relative humidity of ≈50% at ≈65 °C), the treated PSCs maintain 97% of their original power conversion efficieney (PCE) after 300 h of aging. In contrast, control devices exhibit almost complete degradation, primarily due to rapid thermal-induced I2 volatilization. These results demonstrate a promising strategy to overcome critical stability challenges in PSCs, particularly in scenarios involving thermal effects.

4.
Nanomicro Lett ; 16(1): 178, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656466

RESUMO

This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells (PSCs). Via A-site cation engineering, a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine (CMA+) cation, which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations, compared to the rigid phenethyl methylamine (PEA+) analog. It demonstrates a significantly lower non-radiative recombination rate, even though the two types of bulky cations have similar chemical passivation effects on perovskite, which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation. The resulting PSCs achieve an exceptional power conversion efficiency (PCE) of 25.5% with a record-high open-circuit voltage (VOC) of 1.20 V for narrow bandgap perovskite (FAPbI3). The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.

5.
Biosens Bioelectron ; 257: 116346, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688230

RESUMO

The field of organic photoelectrochemical transistor (OPECT) is newly emerged, with increasing efforts attempting to utilize its properties in biological sensing. Advanced materials with new physicochemical properties have proven important to this end. Herein, we report a metal-organic polymers-gated OPECT biosensing exemplified by CuⅠ-arylacetylide polymers (CuAs)-modulated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel. Both the photoelectrochemical properties and gating capability of CuAs are explored and optimized for high-efficacy photogating. Morever, based on its inherent structure, the specific reaction between CuAs and sulfur ions (S2-) is revealed and S2--mediated microRNA-21 detection is realized by linking with nucleic acid amplification and alkaline phosphatase catalytic chemistry. This work introduces metal-organic polymers as gating materials for OPECT biosensing.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , MicroRNAs , Polímeros , Poliestirenos , Transistores Eletrônicos , Técnicas Biossensoriais/instrumentação , Polímeros/química , Poliestirenos/química , MicroRNAs/análise , MicroRNAs/sangue , Cobre/química , Humanos , Fosfatase Alcalina/química , Limite de Detecção , Tiofenos
6.
Heliyon ; 10(3): e24688, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318003

RESUMO

Corrosion inhibitors play a vital role in impeding the corrosion process of steel bars within concrete structures exposed to corrosive environments. Nevertheless, conventional corrosion inhibitors pose environmental risks. In contrast, contemporary studies have explored corrosion inhibitors that are eco-friendly. However, these inhibitors are burdened by high costs and complex production processes, impeding the widespread application in concrete structures. Consequently, this study presents an innovative solution by incorporating uniconazole, an agricultural fungicide, as a corrosion inhibitor for steel bars in concrete structures. The steel bars were exposed to corrosion within a simulated concrete pore solution containing 0.6 mol/L NaCl, both with and without the presence of uniconazole. The morphology and hydrophilicity of the steel bar surface were investigated via optical microscope and contact angle experiments. Electrochemical tests (open circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky analysis) and X-ray photoelectron spectroscopy were employed to investigate the corrosion inhibition performance and mechanism of uniconazole. The results demonstrate that uniconazole elevates the hydrophobicity and contributes to the corrosion inhibition of steel bars. Electrochemical test results indicate that as the concentration of uniconazole increases from 1 × 10-4 mol/L to 1 × 10-3 mol/L, the inhibition efficiency likewise demonstrates a corresponding increase, escalating from around 50 %-90 %. Uniconazole molecules function as mixed-type inhibitors, exhibiting characteristics of both anode-type and cathode-type inhibitors. The adsorption of uniconazole enhances the stability and thickness of the passive-adsorbed layer on the steel surface, effectively impeding the charge transfer process and obstructing the interaction of corrosive substances with the base metal. In summary, the application of uniconazole exhibits the highlights of efficient, cost-effective, environmentally friendly, and the potential for scalable production. This positions uniconazole as a promising candidate for use as a corrosion inhibitor in the domain of concrete structures.

7.
Angew Chem Int Ed Engl ; 63(14): e202316898, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340024

RESUMO

The main obstacles to promoting the commercialization of perovskite solar cells (PSCs) include their record power conversion efficiency (PCE), which still remains below the Shockley-Queisser limit, and poor long-term stability, attributable to crystallographic defects in perovskite films and open-circuit voltage (Voc) loss in devices. In this study, potassium (4-tert-butoxycarbonylpiperazin-1-yl) methyl trifluoroborate (PTFBK) was employed as a multifunctional additive to target and modulate bulk perovskite defects and carrier dynamics of PSCs. Apart from simultaneously passivating anionic and cationic defects, PTFBK could also optimize the energy-level alignment of devices and weaken the interaction between carriers and longitudinal optical phonons, resulting in a carrier lifetime of greater than 3 µs. Furthermore, it inhibited non-radiative recombination and improved the crystallization capacity in the target perovskite film. Hence, the target rigid and flexible p-i-n PSCs yielded champion PCEs of 24.99 % and 23.48 %, respectively. More importantly, due to hydrogen bonding between formamidinium and fluorine, the target devices exhibited remarkable thermal, humidity, and operational tracking at maximum power point stabilities. The reduced Young's modulus and residual stress in the perovskite layer also provided excellent bending stability for flexible target devices.

8.
Cryobiology ; 115: 104864, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38387752

RESUMO

The aim of this study was to investigate the therapeutic effect of cryoablation treatment in advanced NSCLC patients who had failed first-line chemotherapy. Eighty-seven patients from ten hospitals in China were enrolled into the study, forty-four patients received cryoablation treatment plus basic treatment (experimental group), and forty-three patients had basic treatment alone (control group). Follow-up was performed once every three months until the end of the study or the death of the patient. The primary endpoints were overall and post-intervention survival; secondary endpoints included tumor markers, solid tumor efficacy, and symptom changes before and after treatment. There was no significant difference in median OS between the two groups of patients (9.0 months vs 11.2 months, P = 0.583). The disease control rate (DCR) and living quality of the experimental group was higher than that of the control group. In terms of OS, indiscriminate use of cryoablation for such patients was not beneficial, though it could improve symptoms of patients. Cryoablation had a significant effect on selected advanced NSCLC patients after the failure of first-line chemotherapy.

9.
Adv Mater ; : e2311473, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224961

RESUMO

This review outlines the rapid evolution of flexible perovskite solar cells (f-PSCs) to address the urgent need for alternative energy sources, highlighting their impressive power conversion efficiency, which increases from 2.62% to over 24% within a decade. The unique optoelectronic properties of perovskite materials and their inherent mechanical flexibilities instrumental in the development of f-PSCs are examined. Various strategies proposed for material modification and device optimization significantly enhance efficiency and bending durability. The transition from small-scale devices to large-area photovoltaic modules for diverse applications is discussed in addition to the challenges and innovative solutions related to film uniformity and environmental stability. This review provides succinct yet comprehensive insights into the development of f-PSCs, paving the way for their integration into various applications and highlighting their potential in the renewable energy landscape.

10.
Biochem Pharmacol ; 219: 115950, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043718

RESUMO

Metabolic network intertwines with cancerous signaling and drug responses. Malonate is a prevailing metabolite in cancer and a competitive inhibitor of succinate dehydrogenase (SDH). Recent studies showed that malonate induced reactive oxygen species (ROS)-dependent apoptosis in neuroblastoma cells, but protected cells from ischemia-reperfusion injury. We here revealed that malonate differentially regulated cell death and survival in cancer cells. While high-dose malonate triggered ROS-dependent apoptosis, the low-dose malonate induced autophagy and conferred resistance to multiple chemotherapeutic agents. Mechanistically, our results showed that malonate increased p53 stability and transcriptionally up-regulated autophagy modulator DRAM (damage-regulated autophagy modulator), thus promoting autophagy. We further proved that autophagy is required for malonate-associated chemoresistance. Collectively, our findings suggest that malonate plays a double-edge function in cancer response to stressors, and highlights a pro-cancer impact of p53-induced autophagy in response to malonate.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Apoptose , Autofagia , Malonatos/farmacologia , Linhagem Celular Tumoral
11.
Adv Mater ; 36(6): e2309208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009812

RESUMO

Although the FAPbI3 perovskite system exhibits an impressive optoelectronic characteristic and thermal stability because of its energetically unstable black phase at room temperature, it is considerably challenging to attain a controllable and oriented nucleation of α-FAPbI3 . To overcome this challenge, a 2D perovskite with a released inorganic octahedral distortion designed by weakening the hydrogen interactions between the organic interlayer and [PbI6 ]4- octahedron is presented in this study. A highly matched heterointerface can be formed between the (002) facet of the 2D structure and the (100) crystal plane of the cubic α-FAPbI3 , thereby lowering the crystallization energy and inducing a heterogeneous nucleation of α-FAPbI3 . This "epitaxial growth" mechanism results form the highly preferred crystallographic orientation of the (100) facets, improved crystal quality and film uniformity, substantially increased charge transporting characteristics, and suppressed nonradiative recombination losses. An impressive power conversion efficiency (PCE) of 25.4% (certified 25.2%) is achieved using target PSCs, which demonstrates outstanding ambient and operational stability. The feasibility of this strategy is proved for the scalable deposition of homogeneous and high-quality perovskite thin films by demonstrating the remarkably increased PCE of the large-area perovskite solar module, from 18.2% to 20.1%.

12.
Adv Mater ; 36(13): e2309998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108580

RESUMO

While significant advancements in power conversion efficiencies (PCEs) of α-FAPbI3perovskite solar cells (PSCs) have been made, attaining controllable perovskite crystallization is still a considerable hurdle. This challenge stems from the initial formation of δ-FAPbI3, a more energetically stable phase than the desired black α-phase, during film deposition. This disrupts the heterogeneous nucleation of α-FAPbI3, causing the formation of mixed phases and defects. To this end, polarity engineering using molecular additives, specifically ((methyl-sulfonyl)phenyl)ethylamines (MSPEs) are introduced. The findings reveal that the interaction of PbI2-MSPEs-FAI intermediates is enhanced with the increased polarity of MSPEs, which in turn expedites the nucleation of α-FAPbI3. This leads to the development of high-quality α-FAPbI3 films, characterized by vertical crystal orientation and reduced residual stresses. Additionally, the increased dipole moment of MSPE at perovskite grain boundaries attenuates Coulomb attractions among charged defects and screens carrier capture process, thereby diminishing non-radiative recombination. Utilizing these mechanisms, PSCs treated with highly polar 2-(4-MSPE) achieve an impressive PCE of 25.2% in small-area devices and 20.5% in large-area perovskite solar modules (PSMs) with an active area of 70 cm2. These results demonstrate the effectiveness of this strategy in achieving controllable crystallization of α-FAPbI3, paving the way for scalable-production of high-efficiency PSMs.

13.
Cell Death Discov ; 9(1): 381, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852963

RESUMO

Migrasome is a novel cellular organelle produced during cell migration, and its biogenesis depends on the migration process. It is generated in a variety of cells such as immune cells, metastatic tumor cells, other special functional cells like podocytes and cells in developing organisms. It plays important roles in various fields especially in the information exchange between cells. The discovery of migrasome, as an important supplement to the extracellular vesicle system, provides new mechanisms and targets for comprehending various biological or pathological processes. In this article, we will review the discovery, structure, distribution, detection, biogenesis, and removal of migrasomes and mainly focus on summarizing its biological functions in cell-to-cell communication, homeostatic maintenance, embryonic development and multiple diseases. This review also creates prospects for the possible research directions and clinical applications of migrasomes in the future.

14.
Mater Horiz ; 10(11): 5223-5234, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37727103

RESUMO

Perovskite films are susceptible to degradation during their service period due to their weak mechanical properties. Acylhydrazone-bonded waterborne polyurethane (Ab-WPU) was employed as dynamic covalent polymer engineering to develop self-healing perovskite solar cells (SHPSCs). Ab-WPU enhances the crystallinity of the perovskite film, passivates the defects of the perovskite film through functional groups, and demonstrates promising flexibility and mild temperature self-healing properties of SHPSCs. The champion efficiency of SHPSCs on rigid and flexible substrates reaches 24.2% and 21.27% respectively. The moisture and heat stability of devices were improved. After 1000 bending cycles, the Ab-WPU-modified flexible device can be restored to an efficiency of over 95% of its original efficiency by heating to 60 °C. This is because the dynamic acylhydrazone bond can be activated to repair perovskite film defects at a mild temperature of 60 °C as evidenced by in situ AFM studies. This strategy provides an effective pathway for dynamic self-healing materials in PSCs under operational conditions.

15.
Angew Chem Int Ed Engl ; 62(41): e202310034, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37612732

RESUMO

The wearable application of flexible organic solar cells (f-OSCs) necessitates high power conversion efficiency (PCE) and mechanical robustness. However, photoactive films based on efficient non-fullerene small molecule acceptors (NF-SMAs) are typically brittle, leading to poor mechanical stability in devices. In this study, we achieved a remarkable PCE of 18.06 % in f-OSCs while maintaining ultrahigh mechanical robustness (with a crack-onset strain (COS) of higher than 11 %) by incorporating a linker dimerized acceptor (DOY-TVT). Compared to binary blends, ternary systems exhibit reduced non-radiative recombination, suppressed crystallization and diffusion of NF-SMAs, and improved load distribution across the chain networks, enabling the dissipation of the load energy. Thus, the ternary f-OSCs developed in this study achieved, high PCE and stability, surpassing binary OSCs. Moreover, the developed f-OSCs retained 97 % of the initial PCE even after 3000 bending cycles, indicating excellent mechanical stability (9.1 % higher than binary systems). Furthermore, the rigid device with inverted structure based on the optimal active layer exhibited a substantial increase in efficiency retention, with 89.6 % after 865 h at 85 °C and 93 % after more than 1300 h of shelf storage at 25 °C. These findings highlight the potential of the linker oligomer acceptor for realizing high-performing f-OSCs with ultrahigh mechanical robustness.

16.
EMBO J ; 42(16): e113258, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37409632

RESUMO

Mitochondrial biogenesis is the process of generating new mitochondria to maintain cellular homeostasis. Here, we report that viruses exploit mitochondrial biogenesis to antagonize innate antiviral immunity. We found that nuclear respiratory factor-1 (NRF1), a vital transcriptional factor involved in nuclear-mitochondrial interactions, is essential for RNA (VSV) or DNA (HSV-1) virus-induced mitochondrial biogenesis. NRF1 deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in mice. Mechanistically, the inhibition of NRF1-mediated mitochondrial biogenesis aggravated virus-induced mitochondrial damage, promoted the release of mitochondrial DNA (mtDNA), increased the production of mitochondrial reactive oxygen species (mtROS), and activated the innate immune response. Notably, virus-activated kinase TBK1 phosphorylated NRF1 at Ser318 and thereby triggered the inactivation of the NRF1-TFAM axis during HSV-1 infection. A knock-in (KI) strategy that mimicked TBK1-NRF1 signaling revealed that interrupting the TBK1-NRF1 connection ablated mtDNA release and thereby attenuated the HSV-1-induced innate antiviral response. Our study reveals a previously unidentified antiviral mechanism that utilizes a NRF1-mediated negative feedback loop to modulate mitochondrial biogenesis and antagonize innate immune response.


Assuntos
Antivirais , Biogênese de Organelas , Animais , Camundongos , DNA Mitocondrial/genética , Imunidade Inata , Fator 1 Nuclear Respiratório/genética
17.
Sci Total Environ ; 899: 165650, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37474076

RESUMO

Earth observation satellites have facilitated the quantification of how vegetation phenology responds to climate warming on large scales. However, satellite image pixels may contain a mixture of multiple vegetation types or species with diverse phenological responses to climate variability. It is unclear how these mixed pixels affect the statistical relationships between satellite-derived vegetation phenology and climate factors. Here, we aim to investigate the impacts of percent tree cover (PTC), a measure of mixed pixel, on the statistical relationships between satellite-derived vegetation greenup date (GUD) and spring air temperature across Eurasian boreal forests at a 0.05° spatial resolution. We estimated GUD using Moderate Resolution Imaging Spectroradiometer (MODIS) time series data. The responses of GUD to interannual variation in spring temperature (April to May) during 2001-2020 were characterized by correlation coefficient (RTAM) and sensitivity (STAM). We then evaluated the local impacts of PTC on spatial variations in RTAM and STAM using partial correlation analysis through spatial moving windows. Our results indicate that, for most areas, forests with higher PTC were associated with stronger RTAM and STAM. Moreover, PTC had stronger local impacts on RTAM and STAM than mean annual temperature and temperature seasonality for 37.3% and 27.4% of the moving windows, respectively. These impacts were spatially varying and different among forest types. Specifically, deciduous broadleaf forests and deciduous needleleaf forests tend to have a higher proportion of these impacts compared to other forest types. Our findings demonstrate the nonnegligible effects of PTC on the statistical responses of GUD to temperature variability at coarse spatial resolution (0.05°) across Eurasian boreal forests.


Assuntos
Taiga , Árvores , Temperatura , Estações do Ano , Florestas , Mudança Climática , Ecossistema
18.
Langmuir ; 39(31): 11016-11027, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499073

RESUMO

The adsorption of gaseous HCHO by raw lotus shell biochar carbonized at 500, 700, and 900 °C from the perspective of its internal crystal structure and surface functional groups was investigated by an integrated approach of experiments and density functional theory calculations. The results showed that lotus shell biochar carbonized at 700 °C had the best adsorption effect at a HCHO concentration of 10.50 ± 0.30 mg/m3, with an adsorption removal rate of 87.64%. The HCHO removal efficiency by lotus shell biochar carbonized at 500 and 900 °C was determined to be 80.96 and 83.07%, respectively. The HCHO adsorption on lotus shell biochar carbonized at 700 °C conformed to pseudo-second-order kinetics and was predominantly controlled by chemical adsorption. The Langmuir isotherm was the underlying mechanism for the monomolecular layer adsorption with a maximum adsorption capacity of 0.329 mg/g. The density functional theory calculations revealed that the adsorption of HCHO on the surface of CaCO3 and KCl in lotus shell biochar carbonized at 700 °C was a chemical adsorption process, with adsorption energies ranging from -64.375 to -87.554 kJ/mol. The strong interaction between HCHO and the surface was attributed to the electron transfer from HCHO to the surface, facilitated by metal atoms (Ca or K) and the oxygen atoms of HCHO. The carboxyl group on the surface of lotus shell biochar carbonized at 700 °C was identified as the key functional group responsible for HCHO adsorption. This study advanced our understanding of the environmental functions of inorganic crystals and surface functional groups in raw biochar and will enable the further development of biochar materials in environmental applications.

19.
mSystems ; 8(4): e0023723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37432027

RESUMO

Vibrio parahaemolyticus must endure various challenging circumstances while being swallowed by phagocytes of the innate immune system. Moreover, bacteria should recognize and react to environmental signals quickly in host cells. Two-component system (TCS) is an important way for bacteria to perceive external environmental signals and transmit them to the interior to trigger the associated regulatory mechanism. However, the regulatory function of V. parahaemolyticus TCS in innate immune cells is unclear. Here, the expression patterns of TCS in V. parahaemolyticus-infected THP-1 cell-derived macrophages at the early stage were studied for the first time. Based on protein-protein interaction network analysis, we mined and analyzed seven critical TCS genes with excellent research value in the V. parahaemolyticus regulating macrophages, as shown below. VP1503, VP1502, VPA0021, and VPA0182 could regulate the ATP-binding-cassette (ABC) transport system. VP1735, uvrY, and peuR might interact with thermostable hemolysin proteins, DNA cleavage-related proteins, and TonB-dependent siderophore enterobactin receptor, respectively, which may assist V. parahaemolyticus in infected macrophages. Subsequently, the potential immune escape pathways of V. parahaemolyticus regulating macrophages were explored by RNA-seq. The results showed that V. parahaemolyticus might infect macrophages by controlling apoptosis, actin cytoskeleton, and cytokines. In addition, we found that the TCS (peuS/R) could enhance the toxicity of V. parahaemolyticus to macrophages and might contribute to the activation of macrophage apoptosis. IMPORTANCE This study could offer crucial new insights into the pathogenicity of V. parahaemolyticus without tdh and trh genes. In addition, we also provided a novel direction of inquiry into the pathogenic mechanism of V. parahaemolyticus and suggested several TCS key genes that may assist V. parahaemolyticus in innate immune regulation and interaction.


Assuntos
Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Células THP-1 , Virulência , Genótipo
20.
Mater Horiz ; 10(9): 3582-3588, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37310703

RESUMO

An innovative novel category of polymeric hybridized local and charge-transfer (HLCT) blue materials prepared via solution processing has yet to be reported. This study introduces three polymers, namely PZ1, PZ2, and PZ3, incorporating donor-acceptor-donor (D-A-D) structures with carbazole functioning as the donor and benzophenone as the acceptor. To regulate the luminescence mechanism and conjugation length, carbonyl and alkyl chains are strategically inserted into the backbone. Theoretical calculation and transient absorption spectroscopy illustrate that the robust spin-orbit coupling between high-lying singlet excited states (Sm: m ⩽ 4) and triplet excited states (Tn: n ⩽ 7) of the polymers hastens and significantly heightens the efficiency of reverse intersystem crossing processes from Tn states. Furthermore, the existence of multiple degenerated frontier molecular orbits and significant overlaps between Tn and Sm states give rise to added radiative pathways that boost the radiative rate. This study marks a fundamental and initial manifestation of HLCT materials within the polymer field and provides a new avenue for the design of highly efficient polymeric emitters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA