Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(48): 55652-55658, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37991928

RESUMO

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has been considered as the most promising absorber material for inorganic thin-film solar cells. Among the three main interfaces in CZTSSe-based solar cells, the CZTSSe/Mo back interface plays an essential role in hole extraction as well as device performance. During the selenization process, the reaction between CZTSSe and Mo is one of the main reasons that lead to a large open circuit voltage (VOC) deficit, low short circuit current (Jsc), and fill factor. In this study, 2D Ti3C2-MXene was introduced as an intermediate layer to optimize the interface between the CZTSSe absorber layer and Mo back contact. Benefiting from the 2D Ti3C2-MXene intermediate layer, the reaction between CZTSSe and Mo was effectually suppressed, thus, significantly reducing the thickness of the detrimental Mo(S,Se)2 layer as well as interface recombination at the CZTSSe/Mo back interface. As a result, the power conversion efficiency of the champion device fabricated with the 2D Ti3C2-MXene intermediate layer was improved from 10.89 to 13.14% (active-area efficiency). This study demonstrates the potential use of the 2D Ti3C2-MXene intermediate layer for efficient CZTSSe solar cells and promotes a deeper understanding of the back interface in CZTSSe solar cells.

2.
Nanoscale ; 15(1): 185-194, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36475511

RESUMO

The main bottleneck in the development of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is their very low VOC due to severe carrier recombination. Specifically, due to the poor defect environment and unfavorable band structure, carrier recombination at the front interface is considered to be one of the most serious issues. Thus, to reduce the interface recombination and VOC deficit, we propose a convenient and effective strategy for Cd gradient doping near the front interface during selenization. The formed Cd gradient significantly reduced the CuZn defects and related [2CuZn + SnZn] defect clusters near the CZTSSe-CdS heterojunction, thus significantly suppressing the interface recombination near the heterojunction. Benefitting from the formed Cd gradient, a champion device with 12.14% PCE was achieved with the VOC significantly improved from 432 mV to 486 mV. The proposed element gradient doping strategy can offer a new idea for selenization and element gradient doping in other photoelectric devices.

3.
Talanta ; 176: 573-581, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917792

RESUMO

In this study, ZnO nanotubes (ZNTs) were prepared onto fluorine-doped tin oxide (FTO) glass and used as supports for MIPs arrays fabrication. Due to the imprinted cavities are always located at both inner and outer surface of ZNTs, these ZNTs supported MIPs arrays have good accessibility towards template and can be used as sensing materials for chemical sensors with high sensitivity, excellent selectivity and fast response. Using K3[Fe(CN)6] as electron probe, the fabricated electrochemical sensor shows two linear dynamic ranges (0.02-5µM and 10-800µM) towards dopamine. This proposed electrochemical sensor has been applied for dopamine determination with satisfied recoveries and precision. More complex human urine samples also confirmed that the proposed method has good accuracy for dopamine determination in real biological samples. These results suggest potential applicability of the proposed method and sensor in important molecule analysis.


Assuntos
Dopamina/análise , Impressão Molecular , Nanotubos/química , Polímeros/química , Óxido de Zinco/química , Dopamina/química , Dopamina/urina , Técnicas Eletroquímicas , Flúor/química , Vidro/química , Humanos , Compostos de Estanho/química
4.
ACS Appl Mater Interfaces ; 7(3): 1431-8, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25545306

RESUMO

Nitrogen-doped graphene has been demonstrated to be an excellent multifunctional material due to its intriguing features such as outstanding electrocatalytic activity, high electrical conductivity, and good chemical stability as well as wettability. However, synthesizing the nitrogen-doped graphene with a high nitrogen content and large specific surface area is still a challenge. In this study, we prepared a nitrogen-doped graphene aerogel (NGA) with high porosity by means of a simple hydrothermal reaction, in which graphene oxide and ammonia are adopted as carbon and nitrogen source, respectively. The microstructure, morphology, porous properties, and chemical composition of NGA were well-disclosed by a variety of characterization methods, such as scanning electron microscopy, nitrogen adsorption-desorption measurements, X-ray photoelectron spectroscopy, and Raman spectroscopy. The as-made NGA displays a large Brunauer-Emmett-Teller specific surface area (830 m(2) g(-1)), high nitrogen content (8.4 atom %), and excellent electrical conductivity and wettability. On the basis of these features, the as-made NGA shows superior capacitive behavior (223 F g(-1) at 0.2 A g(-1)) and long-term cycling performance in 1.0 mol L(-1) H2SO4 electrolyte. Furthermore, the NGA also possesses a high carbon dioxide uptake capacity at 1.0 bar and 273 K (11.3 wt %).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA