Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sci Rep ; 14(1): 9150, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644364

RESUMO

Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.


Assuntos
DNA Topoisomerases Tipo II , Carcinoma de Células Escamosas de Cabeça e Pescoço , Inibidores da Topoisomerase II , Humanos , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Animais , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Embrião de Galinha
2.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534332

RESUMO

Glioblastoma, a deadly brain tumor, shows limited response to standard therapies like temozolomide (TMZ). Recent findings from the REGOMA trial underscore a significant survival improvement offered by Regorafenib (REGO) in recurrent glioblastoma. Our study aimed to propose a 3D ex vivo drug response precision medicine approach to investigate recurrent glioblastoma sensitivity to REGO and elucidate the underlying molecular mechanisms involved in tumor resistance or responsiveness to treatment. Three-dimensional glioblastoma organoids (GB-EXPs) obtained from 18 patients' resected recurrent glioblastoma tumors were treated with TMZ and REGO. Drug responses were evaluated using NAD(P)H FLIM, stratifying tumors as responders (Resp) or non-responders (NRs). Whole-exome sequencing was performed on 16 tissue samples, and whole-transcriptome analysis on 13 GB-EXPs treated and untreated. We found 35% (n = 9) and 77% (n = 20) of tumors responded to TMZ and REGO, respectively, with no instances of TMZ-Resp being REGO-NRs. Exome analysis revealed a unique mutational profile in REGO-Resp tumors compared to NR tumors. Transcriptome analysis identified distinct expression patterns in Resp and NR tumors, impacting Rho GTPase and NOTCH signaling, known to be involved in drug response. In conclusion, recurrent glioblastoma tumors were more responsive to REGO compared to TMZ treatment. Importantly, our approach enables a comprehensive longitudinal exploration of the molecular changes induced by treatment, unveiling promising biomarkers indicative of drug response.


Assuntos
Glioblastoma , Compostos de Fenilureia , Piridinas , Humanos , Antineoplásicos Alquilantes/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Recidiva Local de Neoplasia/patologia , Temozolomida/farmacologia
3.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373240

RESUMO

Conventional high-grade osteosarcoma (OS) is the most common primary cancer of bone and it typically affects the extremities of adolescents. OS has a complex karyotype, and molecular mechanisms related to carcinogenesis, progression and resistance to therapy are still largely unknown. For this reason, the current standard of care is associated with considerable adverse effects. In this study, our aim was to identify gene alterations in OS patients using whole exome sequencing (WES) to find new potential prognostic biomarkers and therapeutic targets. We performed WES on formalin-fixed paraffin-embedded (FFPE) biopsy materials collected from 19 patients affected by conventional high-grade OS. The clinical and genetic data were analyzed according to response to therapy, presence of metastasis and disease status. By comparing good and poor responders to neoadjuvant therapy, we detected a clear prevalence of mutations in the ARID1A, CREBBP, BRCA2 and RAD50 genes in poor responders that negatively influence the progression-free survival time. Moreover, higher tumor mutational burden values correlated with worse prognosis. The identification of mutations in ARID1A, CREBBP, BRCA2 and RAD50 may support the use of a more specific therapy for tumors harboring these alterations. In particular, BRCA2 and RAD50 are involved in homologous recombination repair, and could thus be used as specific therapy targets of inhibitors of the enzyme Poly ADP Ribose Polymerase (PARP). Finally, tumor mutational burden is found to be a potential prognostic marker for OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Humanos , Prognóstico , Sequenciamento do Exoma , Mutação , Osteossarcoma/genética , Neoplasias Ósseas/genética , Biomarcadores Tumorais/genética
4.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373295

RESUMO

Circulating tumor cells (CTCs) are one of the most important causes of tumor recurrence and distant metastases. Glioblastoma (GBM) has been considered restricted to the brain for many years. Nevertheless, in the past years, several pieces of evidence indicate that hematogenous dissemination is a reality, and this is also in the caseof GBM. Our aim was to optimize CTCs' detection in GBM and define the genetic background of single CTCs compared to the primary GBM tumor and its recurrence to demonstrate that CTCs are indeed derived from the parental tumor. We collected blood samples from a recurrent IDH wt GBM patient. We genotyped the parental recurrent tumor tissue and the respective primary GBM tissue. CTCs were analyzed using the DEPArray system. CTCs Copy Number Alterations (CNAs) and sequencing analyses were performed to compare CTCs' genetic background with the same patient's primary and recurrent GBM tissues. We identified 210 common mutations in the primary and recurrent tumors. Among these, three somatic high-frequency mutations (in PRKCB, TBX1, and COG5 genes) were selected to investigate their presence in CTCs. Almost all sorted CTCs (9/13) had at least one of the mutations tested. The presence of TERT promoter mutations was also investigated and C228T variation was found in parental tumors and CTCs (C228T heterozygous and homozygous, respectively). We were able to isolate and genotype CTCs from a patient with GBM. We found common mutations but also exclusive molecular characteristics.


Assuntos
Glioblastoma , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Glioblastoma/genética , Glioblastoma/patologia , Recidiva Local de Neoplasia/genética , Mutação , Genótipo
5.
Adv Biol (Weinh) ; 7(10): e2200229, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36861331

RESUMO

Pancreatic cancer has a poor prognosis due to its aggressive nature and ability to metastasize at an early stage. Currently, its management is still a challenge because this neoplasm is resistant to conventional treatment approaches, among which is chemo-radiotherapy (CRT), due to the abundant stromal compartment involved in the mechanism of hypoxia. Hyperthermia, among other effects, counteracts hypoxia by promoting blood perfusion and thereby can enhance the therapeutic effect of radiotherapy (RT). Therefore, the establishment of integrated treatments would be a promising strategy for the management of pancreatic carcinoma. Here, the effects of joint radiotherapy/hyperthermia (RT/HT) on optimized chick embryo chorioallantoic membrane (CAM) pancreatic tumor models are investigated. This model enables a thorough assessment of the tumor-arresting effect of the combined approach as well as the quantitative evaluation of hypoxia and cell cycle-associated mechanisms by both gene expression analysis and histology. The analysis of the lower CAM allows to investigate the variation of the metastatic behaviors of the cancer cells associated with the treatments. Overall, this study provides a potentially effective combined strategy for the non-invasive management of pancreatic carcinoma.

6.
Neuro Oncol ; 25(8): 1463-1473, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805257

RESUMO

BACKGROUND: Glioblastoma growth impacts on the structure and physiology of peritumoral neuronal networks, altering the activity of pyramidal neurons which drives further tumor progression. It is therefore of paramount importance to identify glioma-induced changes in pyramidal neurons, since they represent a key therapeutic target. METHODS: We longitudinal monitored visual evoked potentials after the orthotopic implant of murine glioma cells into the mouse occipital cortex. With laser microdissection, we analyzed layer II-III pyramidal neurons molecular profile and with local field potentials recordings we evaluated the propensity to seizures in glioma-bearing animals with respect to control mice. RESULTS: We determine the time course of neuronal dysfunction of glioma-bearing mice and we identify a symptomatic stage, based on the decay of visual response. At that time point, we microdissect layer II-III pyramidal neurons and evaluate the expression of a panel of genes involved in synaptic transmission and neuronal excitability. Compared to the control group, peritumoral neurons show a decrease in the expression of the SNARE complex gene SNAP25 and the alpha1 subunit of the GABA-A receptor. No significant changes are detected in glutamatergic (ie, AMPA or NMDA receptor subunit) markers. Further reduction of GABA-A signaling by delivery of a benzodiazepine inverse agonist, DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) precipitates seizures in 2 mouse models of tumor-bearing mice. CONCLUSIONS: These studies reveal novel molecular changes that occur in the principal cells of the tumor-adjacent zone. These modifications may be therapeutically targeted to ameliorate patients' quality of life.


Assuntos
Potenciais Evocados Visuais , Glioma , Camundongos , Animais , Agonismo Inverso de Drogas , Qualidade de Vida , Convulsões , Neurônios , Glioma/metabolismo
7.
Front Oncol ; 12: 969812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132155

RESUMO

Background: Glioblastoma (GB) is the most severe form of brain cancer, with a 12-15 month median survival. Surgical resection, temozolomide (TMZ) treatment, and radiotherapy remain the primary therapeutic options for GB, and no new therapies have been introduced in recent years. This therapeutic standstill is primarily due to preclinical approaches that do not fully respect the complexity of GB cell biology and fail to test efficiently anti-cancer treatments. Therefore, better treatment screening approaches are needed. In this study, we have developed a novel functional precision medicine approach to test the response to anticancer treatments in organoids derived from the resected tumors of glioblastoma patients. Methods: GB organoids were grown for a short period of time to prevent any genetic and morphological evolution and divergence from the tumor of origin. We chose metabolic imaging by NAD(P)H fluorescence lifetime imaging microscopy (FLIM) to predict early and non-invasively ex-vivo anti-cancer treatment responses of GB organoids. TMZ was used as the benchmark drug to validate the approach. Whole-transcriptome and whole-exome analyses were performed to characterize tumor cases stratification. Results: Our functional precision medicine approach was completed within one week after surgery and two groups of TMZ Responder and Non-Responder tumors were identified. FLIM-based metabolic tumor stratification was well reflected at the molecular level, confirming the validity of our approach, highlighting also new target genes associated with TMZ treatment and identifying a new 17-gene molecular signature associated with survival. The number of MGMT gene promoter methylated tumors was higher in the responsive group, as expected, however, some non-methylated tumor cases turned out to be nevertheless responsive to TMZ, suggesting that our procedure could be synergistic with the classical MGMT methylation biomarker. Conclusions: For the first time, FLIM-based metabolic imaging was used on live glioblastoma organoids. Unlike other approaches, ex-vivo patient-tailored drug response is performed at an early stage of tumor culturing with no animal involvement and with minimal tampering with the original tumor cytoarchitecture. This functional precision medicine approach can be exploited in a range of clinical and laboratory settings to improve the clinical management of GB patients and implemented on other cancers as well.

8.
Biomater Sci ; 10(21): 6135-6145, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36069269

RESUMO

The selective and localized delivery of active agents to neoplasms is crucial to enhance the chemotherapeutic efficacy while reducing the associated side effects. The encapsulation of chemotherapeutics in nanoparticles decorated with targeting agents is a strategy of special interest to improve drug delivery. However, serum protein adsorption often compromises the in vivo efficiency of targeting agents, leading to protein corona formation that interferes with the targeting process. Here, the enhanced efficacy of hybrid nano-architectures enclosing a platinum prodrug and decorated with a customized peptide (NAs-cisPt-Tf2) is demonstrated by employing alternative in vivo models of oral carcinoma. The peptide binds to transferrin and modulates the protein corona formation on NAs-cisPt-Tf2, supporting the identification of its receptor. Optimized chorioallantoic membrane cancer models (CAMs) enabled a thorough assessment of the tumor-suppressing effect of NAs-cisPt-Tf2 as well as the quantitative evaluation of angiogenesis and cell cycle associated mechanisms. The treatment strategy resulted in a significant tumor volume reduction coupled with anti-angiogenic and pro-apoptotic effects inferred from the downregulation of the vascular endothelial growth factor gene and increased expression of cleaved caspase-3. Overall, this study provides a potentially effective tumor-targeted approach for a non-invasive management of oral carcinoma.


Assuntos
Antineoplásicos , Carcinoma , Nanopartículas , Pró-Fármacos , Coroa de Proteína , Humanos , Pró-Fármacos/farmacologia , Platina , Caspase 3 , Fator A de Crescimento do Endotélio Vascular , Transferrina , Peptídeos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
9.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682658

RESUMO

Glioblastoma (GBM) is the most common form of malignant brain cancer and is considered the deadliest human cancer. Because of poor outcomes in this disease, there is an urgent need for progress in understanding the molecular mechanisms of GBM therapeutic resistance, as well as novel and innovative therapies for cancer prevention and treatment. The pentose phosphate pathway (PPP) is a metabolic pathway complementary to glycolysis, and several PPP enzymes have already been demonstrated as potential targets in cancer therapy. In this work, we aimed to evaluate the role of sedoheptulose kinase (SHPK), a key regulator of carbon flux that catalyzes the phosphorylation of sedoheptulose in the nonoxidative arm of the PPP. SHPK expression was investigated in patients with GBM using microarray data. SHPK was also overexpressed in GBM cells, and functional studies were conducted. SHPK expression in GBM shows a significant correlation with histology, prognosis, and survival. In particular, its increased expression is associated with a worse prognosis. Furthermore, its overexpression in GBM cells confirms an increase in cell proliferation. This work highlights for the first time the importance of SHPK in GBM for tumor progression and proposes this enzyme and the nonoxidative PPP as possible therapeutic targets.


Assuntos
Glioblastoma , Via de Pentose Fosfato , Proliferação de Células , Glioblastoma/genética , Glioblastoma/metabolismo , Heptoses , Humanos
10.
Infect Agent Cancer ; 17(1): 35, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739602

RESUMO

The mouse mammary tumour virus (MMTV) is implicated in the aetiology of murine mammary carcinomas and a variant of it, the type B leukemogenic virus, can cause murine thymic lymphomas. Interestingly, a MMTV-like virus is suspected to be involved in human breast cancer and feline mammary carcinomas. However, to date, no cases of MMTV-like sequence amplifications have been described in lymphoid neoplasms in veterinary literature. The aim of this study was to investigate the presence of env nucleotide sequences and protein 14 (p14) of a MMTV-like virus in fifty-three feline lymphoma samples. Our results show that MMTV-like sequences were detected in 5/53 tumours (9.4%): three gastrointestinal lymphomas (one B-type diffuse large, one B-type small non-cleaved, and one T-type diffuse mixed lymphoma); and two nasal lymphomas (one B-type diffuse small cleaved lymphoma and one B-type diffuse mixed lymphoma). P14 expression was detected in the cytoplasm, and rarely in nuclei, exclusively of neoplastic cells from PCR-positive tumours. The correlation between the presence of the MMTV-env like sequences (MMTVels) and p14 antigen was statistically significant in nasal lymphomas. All cats with MMTVels-positive lymphoma had a history of contact with the outdoor environment and/or catteries, and two deceased subjects shared their environment with cats that also died of lymphoma. In conclusion, this study succeeds in demonstrating the presence of MMTVels and p14 in feline lymphomas. The characterization of the immunophenotype of MMTVels-positive lymphomas could contribute to the understanding of a possible role of a MMTV-like virus in feline tumour aetiology. The significant association between the presence of the viral sequences in lymphoid tumours and their nasal localization, together with the data collected through supplementary anamnesis, should be further analysed in order to understand the epidemiology of the virus.

11.
Cells ; 11(7)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406690

RESUMO

BACKGROUND: Glioblastoma (GB) is a devastating primary brain malignancy. The recurrence of GB is inevitable despite the standard treatment of surgery, chemotherapy, and radiation, and the median survival is limited to around 15 months. The barriers to treatment include the complex interactions among the different cellular components inhabiting the tumor microenvironment. The complex heterogeneous nature of GB cells is helped by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. METHODS: By using fluorescent multiple labeling and a DEPArray cell separator, we recovered several single cells or groups of single cells from populations of different origins from IDH-WT GB samples. From each GB sample, we collected astrocytes-like (GFAP+), microglia-like (IBA1+), stem-like cells (CD133+), and endothelial-like cells (CD105+) and performed Copy Number Aberration (CNA) analysis with a low sequencing depth. The same tumors were subjected to a bulk CNA analysis. RESULTS: The tumor partition in its single components allowed single-cell molecular subtyping which revealed new aspects of the GB altered genetic background. CONCLUSIONS: Nowadays, single-cell approaches are leading to a new understanding of GB physiology and disease. Moreover, single-cell CNAs resource will permit new insights into genome heterogeneity, mutational processes, and clonal evolution in malignant tissues.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Patrimônio Genético , Glioblastoma/patologia , Humanos , Microglia/patologia , Microambiente Tumoral/genética
12.
Animals (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34679842

RESUMO

In the last few years MMTV-like nucleotide sequences were detected in some feline and canine mammary tumours. Due to the confirmed role of cats in the epidemiology of the MMTV-like virus, the aim of this study was to investigate the main pathological features of positive feline mammary carcinomas (FMCs). Twenty-four FMCs were collected at the University of Bologna, submitted to laser microdissection and analysed by nested fluorescence-PCR using primer sets specific for MMTV env sequence. For immunohistochemistry, an antibody against MMTV protein 14 (p14) was used. MMTV-like sequences were detected in three out of 24 FMCs (12.5%), one tubular carcinoma, one tubulopapillary carcinoma and one ductal carcinoma. All PCR-positive tumours were also positive for p14. Multiple nucleotide alignment has shown similarity to MMTV ranging from 98% to 100%. All the 102 examined FMCs were submitted to immunohistochemistry for molecular phenotyping. Of the nine MMTV-like positive FMCs, six were basal-like and three luminal-like. Our results demonstrate MMTV-like sequences and protein in FMCs of different geographic areas. Molecular phenotyping could contribute to understand the possible role of MMTV-like virus in FMC tumor biology.

13.
Cell Adh Migr ; 15(1): 180-201, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34157951

RESUMO

MiRNAs represent a mechanism that regulates gene expression in many pathological conditions. Exosomes are known to be secreted from all types of cells, and the exosomes-released molecules are crucial messengers that can regulate cellular processes. We investigated the miRNAs content of exosomes released by cancer cells during the invasion . An invasion stimulus has been generated through scratches created on the confluent cells of cancer cell lines: glioblastoma, breast and prostate cancers.Several miRNAs were found to be significantly differentially abundant during the cell invasion , both in common among different cell lines and exclusive. Understanding the language codes among cells involved in invasion can lead to the development of therapies that can inhibit cellular communication, slowing or eventually stopping their activity.


Assuntos
Neoplasias da Mama/genética , Exossomos/genética , Glioblastoma/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Comunicação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino
14.
Sci Rep ; 11(1): 2755, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531603

RESUMO

Recent evidence suggests that a loss of expression of caveolin in the stromal compartment (sCav-1) of human invasive breast carcinoma (IBC) may be a predictor of disease recurrence, metastasis and poor outcome. At present, there is little knowledge regarding the expression of sCav-1 at the metastatic sites. We therefore studied sCav-1 expression in IBCs and in their axillary lymph nodes to seek a correlation with cancer metastasis. 189 consecutive invasive IBCs (53 with axillary lymph node metastases and 136 without) were studied by immunohistochemistry, using a rabbit polyclonal anti-Cav-1 antibody. In IBCs sCav-1 was evaluated in fibroblasts scattered in the tumor stroma whereas in lymph nodes sCav-1 was assessed in fibroblast-like stromal cells. For the first time, we observed a statistically significant progressive loss of sCav-1 from normal/reactive axillary lymph nodes of tumors limited to the breast to metastatic axillary lymph nodes, through normal/reactive axillary lymph nodes of tumors with axillary metastatic spread. These data indicate that Cav-1 expressed by the stromal compartment of lymph nodes, somehow, may possibly contribute to metastatic spread in IBC.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/secundário , Caveolina 1/metabolismo , Metástase Linfática/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Axila , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Linfonodos/citologia , Linfonodos/patologia , Pessoa de Meia-Idade , Células Estromais/patologia
15.
Aging (Albany NY) ; 11(17): 7236-7241, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31518337

RESUMO

The inheritance of mutated suppressor genes, such as BRCA1 and BRCA2, is acknowledged as an etiological factor in hereditary breast carcinoma (HBC). Two different molecular mechanisms are possible; the Knudson's "two hits" or the gene haploinsufficiency. Etiology of sporadic breast carcinoma (SBC) is not known, although data support the possible role of the betaretrovirus Mouse Mammary Tumor Virus (MMTV). This study analyzes the presence of MMTV exogenous sequences in two representative groups of HBC and SBC, excluding any contamination by murine and retroviral material and endogenous betaretroviruses. The 30.3% of 56 SBC contained MMTV sequences, against the 4.2% of 47 HBC (p < 0.001). Cases positive for viral sequences showed the presence of p14, signal peptide of the MMTV envelope precursor. This result was expected based on the fact that HBCs, having a specific genetic etiology, do not need the action of a carcinogenetic viral agent. Moreover, the striking results obtained by comparing two groups of vastly different tumors represent an additional element of quality control: the distinction between HBC and SBC is so well-defined that results cannot be ascribed to mere coincidence. This paper strengthens the hypothesis for a viral etiology for human sporadic breast carcinoma.


Assuntos
Neoplasias da Mama/virologia , Carcinoma/virologia , Vírus do Tumor Mamário do Camundongo/genética , Adulto , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Genes BRCA1 , Genes BRCA2 , Genes Supressores de Tumor , Mutação em Linhagem Germinativa , Humanos , Pessoa de Meia-Idade , Proteínas Oncogênicas/metabolismo
16.
Front Oncol ; 9: 547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297336

RESUMO

Trastuzumab is an effective therapeutic treatment for Her2-like breast cancer; despite this most of these tumors develop resistance to therapy due to specific gene mutations or alterations in gene expression. Understanding the mechanisms of resistance to Trastuzumab could be a useful tool in order to identify combinations of drugs that elude resistance and allow a better response for the treated patients. Twelve primary biopsies of Her2+/hormone receptor negative (ER-/PgR-) breast cancer patients were selected based on the specific response to neoadjuvant therapy with Trastuzumab and their whole exome was sequenced leading to the identification of 18 informative gene mutations that discriminate patients selectively based on response to treatment. Among these genes, we focused on the study of the ANKRD44 gene to understand its role in the mechanism of resistance to Trastuzumab. The ANKRD44 gene was silenced in Her2-like breast cancer cell line (BT474), obtaining a partially Trastuzumab-resistant breast cancer cell line that constitutively activates the NF-kb protein via the TAK1/AKT pathway. Following this activation an increase in the level of glycolysis in resistant cells is promoted, also confirmed by the up-regulation of the LDHB protein and by an increased TROP2 protein expression, found generally associated with aggressive tumors. These results allow us to consider the ANKRD44 gene as a potential gene involved in Trastuzumab resistance.

17.
Front Oncol ; 9: 482, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231613

RESUMO

Laser capture microdissection (LCM) coupled with RNA-seq is a powerful tool to identify genes that are differentially expressed in specific histological tumor subtypes. To better understand the role of single tumor cell populations in the complex heterogeneity of glioblastoma, we paired microdissection and NGS technology to study intra-tumoral differences into specific histological regions and cells of human GBM FFPE tumors. We here isolated astrocytes, neurons and endothelial cells in 6 different histological contexts: tumor core astrocytes, pseudopalisading astrocytes, perineuronal astrocytes in satellitosis, neurons with satellitosis, tumor blood vessels, and normal blood vessels. A customized protocol was developed for RNA amplification, library construction, and whole transcriptome analysis of each single portion. We first validated our protocol comparing the obtained RNA expression pattern with the gene expression levels of RNA-seq raw data experiments from the BioProject NCBI database, using Spearman's correlation coefficients calculation. We found a good concordance for pseudopalisading and tumor core astrocytes compartments (0.5 Spearman correlation) and a high concordance for perineuronal astrocytes, neurons, normal, and tumor endothelial cells compartments (0.7 Spearman correlation). Then, Principal Component Analysis and differential expression analysis were employed to find differences between tumor compartments and control tissue and between same cell types into distinct tumor contexts. Data consistent with the literature emerged, in which multiple therapeutic targets significant for glioblastoma (such as Integrins, Extracellular Matrix, transmembrane transport, and metabolic processes) play a fundamental role in the disease progression. Moreover, specific cellular processes have been associated with certain cellular subtypes within the tumor. Our results are promising and suggest a compelling method for studying glioblastoma heterogeneity in FFPE samples and its application in both prospective and retrospective studies.

18.
Front Oncol ; 8: 452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364293

RESUMO

Background and objectives: Cancer stem cells (CSCs) have been implicated in tumor initiation, recurrence, metastatic spread and poor survival in multiple tumor types, breast cancers included. CSCs selectively overexpress key mitochondrial-related proteins and inhibition of mitochondrial function may represent a new potential approach for the eradication of CSCs. Because mitochondria evolved from bacteria, many classes of FDA-approved antibiotics, including doxycycline, actually target mitochondria. Our clinical pilot study aimed to determine whether short-term pre-operative treatment with oral doxycycline results in reduction of CSCs in early breast cancer patients. Methods: Doxycycline was administered orally for 14 days before surgery for a daily dose of 200 mg. Immuno-histochemical analysis of formalin-fixed paraffin-embedded (FFPE) samples from 15 patients, of which 9 were treated with doxycycline and 6 were controls (no treatment), was performed with known biomarkers of "stemness" (CD44, ALDH1), mitochondria (TOMM20), cell proliferation (Ki67, p27), apoptosis (cleaved caspase-3), and neo-angiogenesis (CD31). For each patient, the analysis was performed both on pre-operative specimens (core-biopsies) and surgical specimens. Changes from baseline to post-treatment were assessed with MedCalc 12 (unpaired t-test) and ANOVA. Results: Post-doxycycline tumor samples demonstrated a statistically significant decrease in the stemness marker CD44 (p-value < 0.005), when compared to pre-doxycycline tumor samples. More specifically, CD44 levels were reduced between 17.65 and 66.67%, in 8 out of 9 patients treated with doxycycline. In contrast, only one patient showed a rise in CD44, by 15%. Overall, this represents a positive response rate of nearly 90%. Similar results were also obtained with ALDH1, another marker of stemness. In contrast, markers of mitochondria, proliferation, apoptosis, and neo-angiogenesis, were all similar between the two groups. Conclusions: Quantitative decreases in CD44 and ALDH1 expression are consistent with pre-clinical experiments and suggest that doxycycline can selectively eradicate CSCs in breast cancer patients in vivo. Future studies (with larger numbers of patients) will be conducted to validate these promising pilot studies.

19.
EBioMedicine ; 37: 56-67, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30314897

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most frequent and malignant primary brain tumor in adults and despite the progress in surgical procedures and therapy options, the overall survival remains very poor. Glutamate and α-KG are fundamental elements necessary to support the growth and proliferation of GBM cells. Glutamate oxidative deamination, catalyzed by GLUD2, is the predominant pathway for the production of α-KG. METHODS: GLUD2 emerged from the RNA-seq analysis of 13 GBM patients, performed in our laboratory and a microarray analysis of 77 high-grade gliomas available on the Geo database. Thereafter, we investigated GLUD2 relevance in cancer cell behavior by GLUD2 overexpression and silencing in two different human GBM cell lines. Finally, we overexpressed GLUD2 in-vivo by using zebrafish embryos and monitored the developing central nervous system. FINDINGS: GLUD2 expression was found associated to the histopathological classification, prognosis and survival of GBM patients. Moreover, through in-vitro functional studies, we showed that differences in GLUD2 expression level affected cell proliferation, migration, invasion, colony formation abilities, cell cycle phases, mitochondrial function and ROS production. In support of these findings, we also demonstrated, with in-vivo studies, that GLUD2 overexpression affects glial cell proliferation without affecting neuronal development in zebrafish embryos. INTERPRETATION: We concluded that GLUD2 overexpression inhibited GBM cell growth suggesting a novel potential drug target for control of GBM progression. The possibility to enhance GLUD2 activity in GBM could result in a blocked/reduced proliferation of GBM cells without affecting the survival of the surrounding neurons.


Assuntos
Glioblastoma/metabolismo , Glutamato Desidrogenase/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/patologia , Glutamato Desidrogenase/genética , Humanos , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
PLoS One ; 13(7): e0200839, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040851

RESUMO

Mouse mammary tumour virus-like (MMTV-like) is suspected to be involved in human breast cancer and it has been hypothesized that companion animals might have a role in viral transmission. The aim of our study was to investigate the presence of MMTV-like nucleotide sequences and viral protein in a larger number of feline (FMCs) and canine mammary carcinomas (CMCs) by nested PCR and immunohistochemistry. Results showed that the presence of MMTV-like env sequence in FMCs was 7% (6/86), while all the CMCs and canine dysplastic lesions scored negative. All PCR-positive FMCs scored positive for the MMTV p14 signal peptide of the envelope precursor protein of the virus. In contrast, all PCR-negative FMCs and canine mammary lesions were also negative for immunohistochemistry analysis. Canine and feline normal mammary gland tissues scored negative for both PCR and MMTV-p14 protein. Multiple nucleotide alignment of MMTV-like env gene sequences isolated from cat showed 97% and 99% similarity with HMTV and MMTV, respectively, while the others two presented some polimorphisms. Particularly the sequences of one of these two tumors showed a polymorphism (c.7575 A> G), that causes a previously unreported amino acid substitution (Thr > Ala). In conclusion, the results of our study showed the presence of MMTV-like sequences and viral protein in some FMCs. Further studies are needed to understand whether this virus does play a role in the development of FMCs, if MMTV-like is an exogenous virus as these data suggest and, in such a case, how and from whom this virus was acquired.


Assuntos
Produtos do Gene env/genética , Neoplasias Mamárias Animais/virologia , Vírus do Tumor Mamário do Camundongo/genética , Animais , Mama/patologia , Gatos , DNA Viral/genética , Cães , Feminino , Genes env , Imuno-Histoquímica , Inflamação , Lasers , Camundongos , Microdissecção , Filogenia , Sinais Direcionadores de Proteínas , Infecções Tumorais por Vírus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA