Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
EBioMedicine ; 103: 105096, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574408

RESUMO

BACKGROUND: Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression. METHODS: We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites. FINDINGS: We find and replicate 3 previously unreported T2D differentially methylated CpG positions (T2D-DMPs) at FDR 5% in RGL3, NGB and OTX2, and 20 signals at FDR 25%, of which 14 replicated. Integrating genetic variation and T2D-discordant monozygotic twin analyses, we identify both genetic-based and genetic-independent T2D-DMPs. The signals annotate to genes with established GWAS and EWAS links to T2D and its complications, including blood pressure (RGL3) and eye disease (OTX2). INTERPRETATION: The results help to improve our understanding of T2D disease pathogenesis and progression and may provide biomarkers for its complications. FUNDING: Funding acknowledgements for each cohort can be found in the Supplementary Note.


Assuntos
Ilhas de CpG , Metilação de DNA , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Feminino , Masculino , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Pessoa de Meia-Idade , Epigênese Genética , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Complicações do Diabetes/genética , Perfilação da Expressão Gênica
2.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464031

RESUMO

Viruses are an abundant and crucial component of the human microbiome, but accurately discovering them via metagenomics is still challenging. Currently, the available viral reference genomes poorly represent the diversity in microbiome samples, and expanding such a set of viral references is difficult. As a result, many viruses are still undetectable through metagenomics even when considering the power of de novo metagenomic assembly and binning, as viruses lack universal markers. Here, we describe a novel approach to catalog new viral members of the human gut microbiome and show how the resulting resource improves metagenomic analyses. We retrieved >3,000 viral-like particles (VLP) enriched metagenomic samples (viromes), evaluated the efficiency of the enrichment in each sample to leverage the viromes of highest purity, and applied multiple analysis steps involving assembly and comparison with hundreds of thousands of metagenome-assembled genomes to discover new viral genomes. We reported over 162,000 viral sequences passing quality control from thousands of gut metagenomes and viromes. The great majority of the retrieved viral sequences (~94.4%) were of unknown origin, most had a CRISPR spacer matching host bacteria, and four of them could be detected in >50% of a set of 18,756 gut metagenomes we surveyed. We included the obtained collection of sequences in a new MetaPhlAn 4.1 release, which can quantify reads within a metagenome matching the known and newly uncovered viral diversity. Additionally, we released the viral database for further virome and metagenomic studies of the human microbiome.

3.
iScience ; 27(3): 109132, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433906

RESUMO

Chronic kidney disease (CKD) is a major public health burden, with dietary acid load (DAL) and gut microbiota playing crucial roles. As DAL can affect the host metabolome, potentially via the gut microbiota, we cross-sectionally investigated the interplay between DAL, host metabolome, gut microbiota, and early-stage CKD (TwinsUK, n = 1,453). DAL was positively associated with CKD stage G1-G2 (Beta (95% confidence interval) = 0.34 (0.007; 0.7), p = 0.046). After adjusting for covariates and multiple testing, we identified 15 serum, 14 urine, 8 stool, and 7 saliva metabolites, primarily lipids and amino acids, associated with both DAL and CKD progression. Of these, 8 serum, 2 urine, and one stool metabolites were found to mediate the DAL-CKD association. Furthermore, the stool metabolite 5-methylhexanoate (i7:0) correlated with 26 gut microbial species. Our findings emphasize the gut microbiota's therapeutic potential in countering DAL's impact on CKD through the host metabolome. Interventional and longitudinal studies are needed to establish causality.

4.
Cell Rep ; 43(2): 113728, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38300802

RESUMO

Cardiometabolic diseases are leading causes of mortality in Western countries. Well-established risk factors include host genetics, lifestyle, diet, and the gut microbiome. Moreover, gut bacterial communities and their activities can be altered by bacteriophages (also known simply as phages), bacteria-infecting viruses, making these biological entities key regulators of human cardiometabolic health. The manipulation of bacterial populations by phages enables the possibility of using phages in the treatment of cardiometabolic diseases through phage therapy and fecal viral transplants. First, however, a deeper understanding of the role of the phageome in cardiometabolic diseases is required. In this review, we first introduce the phageome as a component of the gut microbiome and discuss fecal viral transplants and phage therapy in relation to cardiometabolic diseases. We then summarize the current state of phageome research in cardiometabolic diseases and propose how the phageome might indirectly influence cardiometabolic health through gut bacteria and their metabolites.


Assuntos
Bacteriófagos , Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Bactérias , Transplante de Microbiota Fecal , Doenças Cardiovasculares/terapia
5.
BMC Digit Health ; 1(1): 6, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38014372

RESUMO

COVID-19 mortality prediction Background COVID-19 has become a major global public health problem, despite prevention and efforts. The daily number of COVID-19 cases rapidly increases, and the time and financial costs associated with testing procedure are burdensome. Method To overcome this, we aim to identify immunological and metabolic biomarkers to predict COVID-19 mortality using a machine learning model. We included inpatients from Hong Kong's public hospitals between January 1, and September 30, 2020, who were diagnosed with COVID-19 using RT-PCR. We developed three machine learning models to predict the mortality of COVID-19 patients based on data in their electronic medical records. We performed statistical analysis to compare the trained machine learning models which are Deep Neural Networks (DNN), Random Forest Classifier (RF) and Support Vector Machine (SVM) using data from a cohort of 5,059 patients (median age = 46 years; 49.3% male) who had tested positive for COVID-19 based on electronic health records and data from 532,427 patients as controls. Result We identified top 20 immunological and metabolic biomarkers that can accurately predict the risk of mortality from COVID-19 with ROC-AUC of 0.98 (95% CI 0.96-0.98). Of the three models used, our result demonstrate that the random forest (RF) model achieved the most accurate prediction of mortality among COVID-19 patients with age, glomerular filtration, albumin, urea, procalcitonin, c-reactive protein, oxygen, bicarbonate, carbon dioxide, ferritin, glucose, erythrocytes, creatinine, lymphocytes, PH of blood and leukocytes among the most important biomarkers identified. A cohort from Kwong Wah Hospital (131 patients) was used for model validation with ROC-AUC of 0.90 (95% CI 0.84-0.92). Conclusion We recommend physicians closely monitor hematological, coagulation, cardiac, hepatic, renal and inflammatory factors for potential progression to severe conditions among COVID-19 patients. To the best of our knowledge, no previous research has identified important immunological and metabolic biomarkers to the extent demonstrated in our study. Supplementary Information: The online version contains supplementary material available at 10.1186/s44247-022-00001-0.

6.
Comput Struct Biotechnol J ; 21: 5326-5336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954149

RESUMO

The gut microbiome is a significant contributor to mental health, with growing evidence linking its composition to anxiety and depressive disorders. Gut microbiome composition is associated with signs of anxiety and depression both in clinically diagnosed mood disorders and subclinically in the general population and may be influenced by dietary fibre intake and the presence of chronic pain. We provide an update of current evidence on the role of gut microbiome composition in depressive and anxiety disorders or symptoms by reviewing available studies. Analysing data from three independent cohorts (osteoarthritis 1 (OA1); n = 46, osteoarthritis 2 (OA2); n = 58, and healthy controls (CON); n = 67), we identified microbial composition signatures of anxiety and depressive symptoms at genus level and cross-validated our findings performing meta-analyses of our results with results from previously published studies. The genera Bifidobacterium (fixed-effect beta (95% CI) = -0.22 (-0.34, -0.10), p = 3.90e-04) and Lachnospiraceae NK4A136 group (fixed-effect beta (95% CI) = -0.09 (-0.13, -0.05), p = 2.53e-06) were found to be the best predictors of anxiety and depressive symptoms, respectively, across our three cohorts and published literature taking into account demographic and lifestyle covariates, such as fibre intake. The association with anxiety was robust in accounting for heterogeneity between cohorts and supports previous observations of the potential prophylactic effect of Bifidobacterium against anxiety symptoms.

7.
Clin Epigenetics ; 15(1): 166, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858220

RESUMO

BACKGROUND: B vitamins such as folate (B9), B6, and B12 are key in one carbon metabolism, which generates methyl donors for DNA methylation. Several studies have linked differential methylation to self-reported intakes of folate and B12, but these estimates can be imprecise, while metabolomic biomarkers can offer an objective assessment of dietary intakes. We explored blood metabolomic biomarkers of folate and vitamins B6 and B12, to carry out epigenome-wide analyses across up to three European cohorts. Associations between self-reported habitual daily B vitamin intakes and 756 metabolites (Metabolon Inc.) were assessed in serum samples from 1064 UK participants from the TwinsUK cohort. The identified B vitamin metabolomic biomarkers were then used in epigenome-wide association tests with fasting blood DNA methylation levels at 430,768 sites from the Infinium HumanMethylation450 BeadChip in blood samples from 2182 European participants from the TwinsUK and KORA cohorts. Candidate signals were explored for metabolite associations with gene expression levels in a subset of the TwinsUK sample (n = 297). Metabolomic biomarker epigenetic associations were also compared with epigenetic associations of self-reported habitual B vitamin intakes in samples from 2294 European participants. RESULTS: Eighteen metabolites were associated with B vitamin intakes after correction for multiple testing (Bonferroni-adj. p < 0.05), of which 7 metabolites were available in both cohorts and tested for epigenome-wide association. Three metabolites - pipecolate (metabolomic biomarker of B6 and folate intakes), pyridoxate (marker of B6 and folate) and docosahexaenoate (DHA, marker of B6) - were associated with 10, 3 and 1 differentially methylated positions (DMPs), respectively. The strongest association was observed between DHA and DMP cg03440556 in the SCD gene (effect = 0.093 ± 0.016, p = 4.07E-09). Pyridoxate, a catabolic product of vitamin B6, was inversely associated with CpG methylation near the SLC1A5 gene promoter region (cg02711608 and cg22304262) and with SLC7A11 (cg06690548), but not with corresponding changes in gene expression levels. The self-reported intake of folate and vitamin B6 had consistent but non-significant associations with the epigenetic signals. CONCLUSION: Metabolomic biomarkers are a valuable approach to investigate the effects of dietary B vitamin intake on the human epigenome.


Assuntos
Complexo Vitamínico B , Humanos , Vitamina B 12 , Epigenoma , Metilação de DNA , Ácido Fólico , Vitamina B 6 , Biomarcadores , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos
8.
Cardiovasc Res ; 119(17): 2743-2754, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-37706562

RESUMO

AIMS: Myocardial infarction (MI) is a major cause of death and disability worldwide. Most metabolomics studies investigating metabolites predicting MI are limited by the participant number and/or the demographic diversity. We sought to identify biomarkers of incident MI in the COnsortium of METabolomics Studies. METHODS AND RESULTS: We included 7897 individuals aged on average 66 years from six intercontinental cohorts with blood metabolomic profiling (n = 1428 metabolites, of which 168 were present in at least three cohorts with over 80% prevalence) and MI information (1373 cases). We performed a two-stage individual patient data meta-analysis. We first assessed the associations between circulating metabolites and incident MI for each cohort adjusting for traditional risk factors and then performed a fixed effect inverse variance meta-analysis to pull the results together. Finally, we conducted a pathway enrichment analysis to identify potential pathways linked to MI. On meta-analysis, 56 metabolites including 21 lipids and 17 amino acids were associated with incident MI after adjusting for multiple testing (false discovery rate < 0.05), and 10 were novel. The largest increased risk was observed for the carbohydrate mannitol/sorbitol {hazard ratio [HR] [95% confidence interval (CI)] = 1.40 [1.26-1.56], P < 0.001}, whereas the largest decrease in risk was found for glutamine [HR (95% CI) = 0.74 (0.67-0.82), P < 0.001]. Moreover, the identified metabolites were significantly enriched (corrected P < 0.05) in pathways previously linked with cardiovascular diseases, including aminoacyl-tRNA biosynthesis. CONCLUSIONS: In the most comprehensive metabolomic study of incident MI to date, 10 novel metabolites were associated with MI. Metabolite profiles might help to identify high-risk individuals before disease onset. Further research is needed to fully understand the mechanisms of action and elaborate pathway findings.


Assuntos
Infarto do Miocárdio , Humanos , Idoso , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Fatores de Risco , Metabolômica/métodos , Biomarcadores
9.
Diabetes ; 72(12): 1870-1880, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699401

RESUMO

Prediabetes is a metabolic condition associated with gut microbiome composition, although mechanisms remain elusive. We searched for fecal metabolites, a readout of gut microbiome function, associated with impaired fasting glucose (IFG) in 142 individuals with IFG and 1,105 healthy individuals from the UK Adult Twin Registry (TwinsUK). We used the Cooperative Health Research in the Region of Augsburg (KORA) cohort (318 IFG individuals, 689 healthy individuals) to replicate our findings. We linearly combined eight IFG-positively associated metabolites (1-methylxantine, nicotinate, glucuronate, uridine, cholesterol, serine, caffeine, and protoporphyrin IX) into an IFG-metabolite score, which was significantly associated with higher odds ratios (ORs) for IFG (TwinsUK: OR 3.9 [95% CI 3.02-5.02], P < 0.0001, KORA: OR 1.3 [95% CI 1.16-1.52], P < 0.0001) and incident type 2 diabetes (T2D; TwinsUK: hazard ratio 4 [95% CI 1.97-8], P = 0.0002). Although these are host-produced metabolites, we found that the gut microbiome is strongly associated with their fecal levels (area under the curve >70%). Abundances of Faecalibacillus intestinalis, Dorea formicigenerans, Ruminococcus torques, and Dorea sp. AF24-7LB were positively associated with IFG, and such associations were partially mediated by 1-methylxanthine and nicotinate (variance accounted for mean 14.4% [SD 5.1], P < 0.05). Our results suggest that the gut microbiome is linked to prediabetes not only via the production of microbial metabolites but also by affecting intestinal absorption/excretion of host-produced metabolites and xenobiotics, which are correlated with the risk of IFG. Fecal metabolites enable modeling of another mechanism of gut microbiome effect on prediabetes and T2D onset. ARTICLE HIGHLIGHTS: Prediabetes is a metabolic condition associated with gut microbiome composition, although mechanisms remain elusive. We investigated whether there is a fecal metabolite signature of impaired fasting glucose (IFG) and the possible underlying mechanisms of action. We identified a fecal metabolite signature of IFG associated with prevalent IFG in two independent cohorts and incident type 2 diabetes in a subanalysis. Although the signature consists of metabolites of nonmicrobial origin, it is strongly correlated with gut microbiome composition. Fecal metabolites enable modeling of another mechanism of gut microbiome effect on prediabetes by affecting intestinal absorption or excretion of host compounds and xenobiotics.


Assuntos
Diabetes Mellitus Tipo 2 , Niacina , Estado Pré-Diabético , Adulto , Humanos , Estado Pré-Diabético/complicações , Diabetes Mellitus Tipo 2/complicações , Jejum , Glucose , Glicemia/metabolismo
10.
Gut Microbes ; 15(1): 2240050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37526398

RESUMO

Short-chain fatty acids (SCFA) are involved in immune system and inflammatory responses. We comprehensively assessed the host genetic and gut microbial contribution to a panel of eight serum and stool SCFAs in two cohorts (TwinsUK, n = 2507; ZOE PREDICT-1, n = 328), examined their postprandial changes and explored their links with chronic and acute inflammatory responses in healthy individuals and trauma patients. We report low concordance between circulating and fecal SCFAs, significant postprandial changes in most circulating SCFAs, and a heritable genetic component (average h2: serum = 14%(SD = 14%); stool = 12%(SD = 6%)). Furthermore, we find that gut microbiome can accurately predict their fecal levels (AUC>0.71) while presenting weaker associations with serum. Finally, we report different correlation patterns with inflammatory markers depending on the type of inflammatory response (chronic or acute trauma). Our results illustrate the breadth of the physiological relevance of SCFAs on human inflammatory and metabolic responses highlighting the need for a deeper understanding of this important class of molecules.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Ácidos Graxos Voláteis/metabolismo , Fezes , Inflamação
11.
BMC Med ; 21(1): 231, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400796

RESUMO

BACKGROUND: A dysregulated postprandial metabolic response is a risk factor for chronic diseases, including type 2 diabetes mellitus (T2DM). The plasma protein N-glycome is implicated in both lipid metabolism and T2DM risk. Hence, we first investigate the relationship between the N-glycome and postprandial metabolism and then explore the mediatory role of the plasma N-glycome in the relationship between postprandial lipaemia and T2DM. METHODS: We included 995 individuals from the ZOE-PREDICT 1 study with plasma N-glycans measured by ultra-performance liquid chromatography at fasting and triglyceride, insulin, and glucose levels measured at fasting and following a mixed-meal challenge. Linear mixed models were used to investigate the associations between plasma protein N-glycosylation and metabolic response (fasting, postprandial (Cmax), or change from fasting). A mediation analysis was used to further explore the relationship of the N-glycome in the prediabetes (HbA1c = 39-47 mmol/mol (5.7-6.5%))-postprandial lipaemia association. RESULTS: We identified 36 out of 55 glycans significantly associated with postprandial triglycerides (Cmax ß ranging from -0.28 for low-branched glycans to 0.30 for GP26) after adjusting for covariates and multiple testing (padjusted < 0.05). N-glycome composition explained 12.6% of the variance in postprandial triglycerides not already explained by traditional risk factors. Twenty-seven glycans were also associated with postprandial glucose and 12 with postprandial insulin. Additionally, 3 of the postprandial triglyceride-associated glycans (GP9, GP11, and GP32) also correlate with prediabetes and partially mediate the relationship between prediabetes and postprandial triglycerides. CONCLUSIONS: This study provides a comprehensive overview of the interconnections between plasma protein N-glycosylation and postprandial responses, demonstrating the incremental predictive benefit of N-glycans. We also suggest a considerable proportion of the effect of prediabetes on postprandial triglycerides is mediated by some plasma N-glycans.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Estado Pré-Diabético , Humanos , Glicemia/metabolismo , Triglicerídeos , Insulina , Polissacarídeos , Proteínas Sanguíneas
12.
Mol Psychiatry ; 28(9): 3874-3887, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37495887

RESUMO

Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.


Assuntos
Depressão , Espectrometria de Massas em Tandem , Humanos , Depressão/metabolismo , Dieta , Metaboloma/genética , Vitamina A/metabolismo , Hipuratos , Metabolômica/métodos
13.
Nutrients ; 15(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299601

RESUMO

BACKGROUND: Postprandial metabolomic profiles and their inter-individual variability are not well characterised. Here, we describe postprandial metabolite changes, their correlations with fasting values and their inter- and intra-individual variability, following a standardised meal in the ZOE PREDICT 1 cohort. METHODS: In the ZOE PREDICT 1 study (n = 1002 (NCT03479866)), 250 metabolites, mainly lipids, were measured by a Nightingale NMR panel in fasting and postprandial (4 and 6 h after a 3.7 MJ mixed nutrient meal, with a second 2.2 MJ mixed nutrient meal at 4 h) serum samples. For each metabolite, inter- and intra-individual variability over time was evaluated using linear mixed modelling and intraclass correlation coefficients (ICC) were calculated. RESULTS: Postprandially, 85% (of 250 metabolites) significantly changed from fasting at 6 h (47% increased, 53% decreased; Kruskal-Wallis), with 37 measures increasing by >25% and 14 increasing by >50%. The largest changes were observed in very large lipoprotein particles and ketone bodies. Seventy-one percent of circulating metabolites were strongly correlated (Spearman's rho >0.80) between fasting and postprandial timepoints, and 5% were weakly correlated (rho <0.50). The median ICC of the 250 metabolites was 0.91 (range 0.08-0.99). The lowest ICCs (ICC <0.40, 4% of measures) were found for glucose, pyruvate, ketone bodies (ß-hydroxybutyrate, acetoacetate, acetate) and lactate. CONCLUSIONS: In this large-scale postprandial metabolomic study, circulating metabolites were highly variable between individuals following sequential mixed meals. Findings suggest that a meal challenge may yield postprandial responses divergent from fasting measures, specifically for glycolysis, essential amino acid, ketone body and lipoprotein size metabolites.


Assuntos
Jejum , Metabolômica , Humanos , Glicemia/metabolismo , Corpos Cetônicos , Lipoproteínas , Espectroscopia de Ressonância Magnética , Período Pós-Prandial , Triglicerídeos , Estudos Clínicos como Assunto
14.
Sci Rep ; 13(1): 10407, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369825

RESUMO

Whilst most individuals with SARS-CoV-2 infection have relatively mild disease, managed in the community, it was noted early in the pandemic that individuals with cardiovascular risk factors were more likely to experience severe acute disease, requiring hospitalisation. As the pandemic has progressed, increasing concern has also developed over long symptom duration in many individuals after SARS-CoV-2 infection, including among the majority who are managed acutely in the community. Risk factors for long symptom duration, including biological variables, are still poorly defined. Here, we examine post-illness metabolomic profiles, using nuclear magnetic resonance (Nightingale Health Oyj), and gut-microbiome profiles, using shotgun metagenomic sequencing (Illumina Inc), in 2561 community-dwelling participants with SARS-CoV-2. Illness duration ranged from asymptomatic (n = 307) to Post-COVID Syndrome (n = 180), and included participants with prolonged non-COVID-19 illnesses (n = 287). We also assess a pre-established metabolomic biomarker score, previously associated with hospitalisation for both acute pneumonia and severe acute COVID-19 illness, for its association with illness duration. We found an atherogenic-dyslipidaemic metabolic profile, including biomarkers such as fatty acids and cholesterol, was associated with longer duration of illness, both in individuals with and without SARS-CoV-2 infection. Greater values of a pre-existing metabolomic biomarker score also associated with longer duration of illness, regardless of SARS-CoV-2 infection. We found no association between illness duration and gut microbiome profiles in convalescence. This highlights the potential role of cardiometabolic dysfunction in relation to the experience of long duration symptoms after symptoms of acute infection, both COVID-19 as well as other illnesses.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Pneumonia , Humanos , SARS-CoV-2 , Hospitalização
15.
Cell Rep Med ; 4(4): 100993, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023745

RESUMO

Primary and secondary bile acids (BAs) influence metabolism and inflammation, and the gut microbiome modulates levels of BAs. We systematically explore the host genetic, gut microbial, and habitual dietary contribution to a panel of 19 serum and 15 stool BAs in two population-based cohorts (TwinsUK, n = 2,382; ZOE PREDICT-1, n = 327) and assess changes post-bariatric surgery and after nutritional interventions. We report that BAs have a moderately heritable genetic component, and the gut microbiome accurately predicts their levels in serum and stool. The secondary BA isoursodeoxycholate (isoUDCA) can be explained mostly by gut microbes (area under the receiver operating characteristic curve [AUC] = ∼80%) and associates with post-prandial lipemia and inflammation (GlycA). Furthermore, circulating isoUDCA decreases significantly 1 year after bariatric surgery (ß = -0.72, p = 1 × 10-5) and in response to fiber supplementation (ß = -0.37, p < 0.03) but not omega-3 supplementation. In healthy individuals, isoUDCA fasting levels correlate with pre-meal appetite (p < 1 × 10-4). Our findings indicate an important role for isoUDCA in lipid metabolism, appetite, and, potentially, cardiometabolic risk.


Assuntos
Cirurgia Bariátrica , Ácidos e Sais Biliares , Humanos , Apetite , Cirurgia Bariátrica/efeitos adversos , Fezes , Inflamação
16.
Nutrients ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37111123

RESUMO

BACKGROUND: Dietary (poly)phenol consumption is inversely associated with cardiovascular disease (CVD) risk in epidemiological studies, but little is known about the role of the gut microbiome in this relationship. METHODS: In 200 healthy females, aged 62.0 ± 10.0 years, from the TwinsUK cohort, 114 individual (poly)phenol metabolites were measured from spot urine using ultra-high-performance liquid chromatography-mass spectrometry. The associations between metabolites, the gut microbiome (alpha diversity and genera), and cardiovascular scores were investigated using linear mixed models adjusting age, BMI, fibre, energy intake, family relatedness, and multiple testing (FDR < 0.1). RESULTS: Significant associations were found between phenolic acid metabolites, CVD risk, and the gut microbiome. A total of 35 phenolic acid metabolites were associated with the Firmicutes phylum, while 5 metabolites were associated with alpha diversity (FDR-adjusted p < 0.05). Negative associations were observed between the atherosclerotic CVD (ASCVD) risk score and five phenolic acid metabolites, two tyrosol metabolites, and daidzein with stdBeta (95% (CI)) ranging from -0.05 (-0.09, -0.01) for 3-(2,4-dihydroxyphenyl)propanoic acid to -0.04 (-0.08, -0.003) for 2-hydroxycinnamic acid (FDR-adjusted p < 0.1). The genus 5-7N15 in the Bacteroidetes phylum was positively associated with the same metabolites, including 3-(3,5-dihydroxyphenyl)propanoic acid, 3-(2,4-dihydroxyphenyl)propanoic acid, 3-(3,4-dihydroxyphenyl)propanoic acid), 3-hydroxyphenylethanol-4-sulfate, and 4-hydroxyphenylethanol-3-sulfate)(stdBeta (95% CI): 0.23 (0.09, 0.36) to 0.28 (0.15, 0.42), FDR-adjusted p < 0.05), and negatively associated with the ASCVD score (stdBeta (95% CI): -0.05 (-0.09, -0.01), FDR-adjusted p = 0.02). Mediation analysis showed that genus 5-7N15 mediated 23.8% of the total effect of 3-(3,4-dihydroxyphenyl)propanoic acid on the ASCVD score. CONCLUSIONS: Coffee, tea, red wine, and several vegetables and fruits, especially berries, are the most abundant food sources of phenolic acids that have the strongest associations with CVD risk. We found that the gut microbiome, particularly the genus 5-7N15, partially mediates the negative association between urinary (poly)phenols and cardiovascular risk, supporting a key role of the gut microbiome in the health benefits of dietary (poly)phenols.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Feminino , Fenol , Estudos Transversais , Propionatos , Fenóis , Metaboloma , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia
17.
Nat Med ; 29(3): 551-561, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36932240

RESUMO

Cardiometabolic diseases have become a leading cause of morbidity and mortality globally. They have been tightly linked to microbiome taxonomic and functional composition, with diet possibly mediating some of the associations described. Both the microbiome and diet are modifiable, which opens the way for novel therapeutic strategies. High-throughput omics techniques applied on microbiome samples (meta-omics) hold the unprecedented potential to shed light on the intricate links between diet, the microbiome, the metabolome and cardiometabolic health, with a top-down approach. However, effective integration of complementary meta-omic techniques is an open challenge and their application on large cohorts is still limited. Here we review meta-omics techniques and discuss their potential in this context, highlighting recent large-scale efforts and the novel insights they provided. Finally, we look to the next decade of meta-omics research and discuss various translational and clinical pathways to improving cardiometabolic health.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Metabolômica/métodos , Dieta , Metaboloma , Doenças Cardiovasculares/metabolismo
18.
Clin J Am Soc Nephrol ; 18(4): 435-445, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758154

RESUMO

BACKGROUND: Individuals with CKD are at a higher risk of cardiovascular morbidity and mortality. Acidosis is positively correlated with CKD progression and elevated systolic BP. Sodium bicarbonate is an efficacious treatment of acidosis, although this may also increase systolic BP. In this systematic review and meta-analysis, we summarize the evidence evaluating systolic BP and antihypertensive medication change (which may indicate systolic BP change) in response to sodium bicarbonate therapy in individuals with CKD. METHODS: Medical Literature Analysis and Retrieval System Online, Excerpta Medica database, Cumulative Index to Nursing and Allied Health Literature, Allied and Complementary Medicine Database, Cochrane Central Register of Controlled Trials, and World Health Organization (WHO) trials registry databases were searched for randomized control trials where sodium bicarbonate was compared with placebo/usual care in CKD stage G1-5 non-dialysis-dependent populations. Random effects meta-analyses were used to evaluate changes in systolic BP and BP-modifying drugs after sodium bicarbonate intervention. RESULTS: Fourteen randomized control trials (2110 individuals, median follow-up 27 [interquartile range 97] weeks, mean age 60 [SD 10] years, mean systolic BP 136 [SD 17] mm Hg, mean eGFR 38 [SD 10] ml/min, mean serum bicarbonate 22 [SD 4] mmol/L) were eligible for inclusion. Meta-analysis suggested that sodium bicarbonate did not influence systolic BP in individuals with CKD stage G1-5. Results were consistent when stratifying by dose of sodium bicarbonate or duration of intervention. Similarly, there was no significant increase in the use of antihypertensive medication or diuretics in individuals taking sodium bicarbonate, whereas there was a greater decrease in antihypertensive medication use in individuals taking sodium bicarbonate compared with controls. CONCLUSIONS: Our results suggest, with moderate certainty, that sodium bicarbonate supplementation does not adversely affect systolic BP in CKD or negatively influence antihypertensive medication requirements.


Assuntos
Acidose , Hipertensão , Falência Renal Crônica , Humanos , Pessoa de Meia-Idade , Pressão Sanguínea , Bicarbonato de Sódio/uso terapêutico , Anti-Hipertensivos/efeitos adversos , Falência Renal Crônica/tratamento farmacológico , Acidose/tratamento farmacológico , Hipertensão/tratamento farmacológico
19.
Nat Med ; 28(11): 2321-2332, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357675

RESUMO

Garrod's concept of 'chemical individuality' has contributed to comprehension of the molecular origins of human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot of human metabolism at scale. We studied the genetic architecture of the human plasma metabolome using 913 metabolites assayed in 19,994 individuals and identified 2,599 variant-metabolite associations (P < 1.25 × 10-11) within 330 genomic regions, with rare variants (minor allele frequency ≤ 1%) explaining 9.4% of associations. Jointly modeling metabolites in each region, we identified 423 regional, co-regulated, variant-metabolite clusters called genetically influenced metabotypes. We assigned causal genes for 62.4% of these genetically influenced metabotypes, providing new insights into fundamental metabolite physiology and clinical relevance, including metabolite-guided discovery of potential adverse drug effects (DPYD and SRD5A2). We show strong enrichment of inborn errors of metabolism-causing genes, with examples of metabolite associations and clinical phenotypes of non-pathogenic variant carriers matching characteristics of the inborn errors of metabolism. Systematic, phenotypic follow-up of metabolite-specific genetic scores revealed multiple potential etiological relationships.


Assuntos
Erros Inatos do Metabolismo , Metaboloma , Humanos , Metaboloma/genética , Metabolômica , Plasma/metabolismo , Fenótipo , Erros Inatos do Metabolismo/genética , Proteínas de Membrana/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo
20.
Nutrients ; 14(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364763

RESUMO

Postprandial insulinaemia, triglyceridaemia and measures of inflammation are thought to be more closely associated with cardiovascular risk than fasting measures. Although hypertension is associated with altered fasting metabolism, it is unknown as to what extent postprandial lipaemic and inflammatory metabolic responses differ between hypertensive and normotensive individuals. Linear models adjusting for age, sex, body mass index (BMI), visceral fat mass (VFM) and multiple testing (false discovery rate), were used to investigate whether hypertensive cases and normotensive controls had different fasting and postprandial (in response to two standardised test meal challenges) lipaemic, glycaemic, insulinaemic, and inflammatory (glycoprotein acetylation (GlycA)) responses in 989 participants from the ZOE PREDICT-1 nutritional intervention study. Compared to normotensive controls, hypertensive individuals had significantly higher fasting and postprandial insulin, triglycerides, and markers of inflammation after adjusting for age, sex, and BMI (effect size: Beta (Standard Error) ranging from 0.17 (0.08), p = 0.04 for peak insulin to 0.29 (0.08), p = 4.4 × 10-4 for peak GlycA). No difference was seen for postprandial glucose. When further adjusting for VFM effects were attenuated. Causal mediation analysis suggests that 36% of the variance in postprandial insulin response and 33.8% of variance in postprandial triglyceride response were mediated by VFM. Hypertensive individuals have different postprandial insulinaemic and lipaemic responses compared to normotensive controls and this is partially mediated by visceral fat mass. Consequently, reducing VFM should be a key focus of health interventions in hypertension. Trial registration: The ClinicalTrials.gov registration identifier is NCT03479866.


Assuntos
Hipertensão , Gordura Intra-Abdominal , Humanos , Glicemia/metabolismo , Inflamação , Insulina , Gordura Intra-Abdominal/metabolismo , Período Pós-Prandial/fisiologia , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA