Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37509229

RESUMO

Higher eukaryotic enhancers, as a major class of regulatory elements, play a crucial role in the regulation of gene expression. Over the last decade, the development of sequencing technologies has flooded researchers with transcriptome-phenotype data alongside emerging candidate regulatory elements. Since most methods can only provide hints about enhancer function, there have been attempts to develop experimental and computational approaches that can bridge the gap in the causal relationship between regulatory regions and phenotypes. The coupling of two state-of-the-art technologies, also referred to as crisprQTL, has emerged as a promising high-throughput toolkit for addressing this question. This review provides an overview of the importance of studying enhancers, the core molecular foundation of crisprQTL, and recent studies utilizing crisprQTL to interrogate enhancer-phenotype correlations. Additionally, we discuss computational methods currently employed for crisprQTL data analysis. We conclude by pointing out common challenges, making recommendations, and looking at future prospects, with the aim of providing researchers with an overview of crisprQTL as an important toolkit for studying enhancers.

2.
Comput Struct Biotechnol J ; 18: 814-820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308928

RESUMO

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas systems, including dead Cas9 (dCas9), Cas9, and Cas12a, have revolutionized genome engineering in mammalian somatic cells. Although computational tools that assess the target sites of CRISPR-Cas systems are inevitably important for designing efficient guide RNAs (gRNAs), they exhibit generalization issues in selecting features and do not provide optimal results in a comprehensive manner. Here, we introduce a Comprehensive Guide Designer (CGD) for four different CRISPR systems, which utilizes the machine learning algorithm, Elastic Net Logistic Regression (ENLOR), to autonomously generalize the models. CGD contains specific models trained with public datasets generated by CRISPRi, CRISPRa, CRISPR-Cas9, and CRISPR-Cas12a (designated as CGDi, CGDa, CGD9, and CGD12a, respectively) in an unbiased manner. The trained CGD models were benchmarked to other regression-based machine learning models, such as ElasticNet Linear Regression (ENLR), Random Forest and Boruta (RFB), and Extreme Gradient Boosting (Xgboost) with inbuilt feature selection. Evaluation with independent test datasets showed that CGD models outperformed the pre-existing methods in predicting the efficacy of gRNAs. All CGD source codes and datasets are available at GitHub (https://github.com/vipinmenon1989/CGD), and the CGD webserver can be accessed at http://big.hanyang.ac.kr:2195/CGD.

3.
Nat Methods ; 14(2): 153-159, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27992409

RESUMO

CRISPR from Prevotella and Francisella 1 (Cpf1) is an effector endonuclease of the class 2 CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) gene editing system. We developed a method for evaluating Cpf1 activity, based on target sequence composition in mammalian cells, in a high-throughput manner. A library of >11,000 target sequence and guide RNA pairs was delivered into human cells using lentiviral vectors. Subsequent delivery of Cpf1 into this cell library induced insertions and deletions (indels) at the integrated synthetic target sequences, which allowed en masse evaluation of Cpf1 activity by using deep sequencing. With this approach, we determined protospacer-adjacent motif sequences of two Cpf1 nucleases, one from Acidaminococcus sp. BV3L6 (hereafter referred to as AsCpf1) and the other from Lachnospiraceae bacterium ND2006 (hereafter referred to as LbCpf1). We also defined target-sequence-dependent activity profiles of AsCpf1, which enabled the development of a web tool that predicts the indel frequencies for given target sequences (http://big.hanyang.ac.kr/cindel). Both the Cpf1 characterization profile and the in vivo high-throughput evaluation method will greatly facilitate Cpf1-based genome editing.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Ensaios de Triagem em Larga Escala/métodos , RNA Guia de Cinetoplastídeos , Acidaminococcus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Clostridiales/genética , Endonucleases/metabolismo , Francisella/genética , Humanos , Prevotella/genética , Transdução Genética
4.
Sci Rep ; 4: 6368, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25220184

RESUMO

Breast cancer has been reported to account for the maximum cases among all female cancers till date. In order to gain a deeper insight into the complexities of the disease, we analyze the breast cancer network and its normal counterpart at the proteomic level. While the short range correlations in the eigenvalues exhibiting universality provide an evidence towards the importance of random connections in the underlying networks, the long range correlations along with the localization properties reveal insightful structural patterns involving functionally important proteins. The analysis provides a benchmark for designing drugs which can target a subgraph instead of individual proteins.


Assuntos
Algoritmos , Neoplasias da Mama/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Feminino , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA