Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Magn Reson Imaging ; 59(4): 1312-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37610269

RESUMO

BACKGROUND: Multiparameter characterization using MR fingerprinting (MRF) can quantify multiple relaxation parameters of intervertebral disc (IVD) simultaneously. These parameters may vary by age and sex. PURPOSE: To investigate age- and sex-related differences in the relaxation parameters of the IVD of the lumbar spine using a multiparameter MRF technique. STUDY TYPE: Prospective. SUBJECTS: 17 healthy subjects (8 male; mean age = 34 ± 10 years, range 20-60 years). FIELD STRENGTH/SEQUENCE: 3D-MRF sequence for simultaneous acquisition of proton density, T1 , T2 , and T1ρ maps at 3.0T. ASSESSMENT: Global mean T1 , T2 , and T1ρ of all lumbar IVDs and mean T1 , T2 , and T1ρ of each individual IVD (L1-L5) were measured. Gray level co-occurrence matrix was used to quantify textural features (median, contrast, correlation, energy, and homogeneity) from T1 , T2 , and T1ρ maps. STATISTICAL TESTS: Spearman rank correlations (R) evaluated the association between age and T1 , T2 , and T1ρ of IVD. Mann-Whitney U-tests evaluated differences between males and females in T1 , T2 , and T1ρ of IVD. Statistical significance was defined as P-value <0.05. RESULTS: There was a significant negative correlation between age and global mean values of all IVDs for T1 (R = -0.637), T2 (R = -0.509), and T1ρ (R = -0.726). For individual IVDs, there was a significant negative correlation between age and mean T1 at all IVD segments (R range = -0.530 to -0.708), between age and mean T2 at L2-L3, L3-L4, and L4-L5 (R range = -0.493 to 0.640), and between age and mean T1ρ at all segments except L1-L2 (R range = -0.632 to -0.763). There were no significant differences between sexes in global mean T1 , T2, and T1ρ (P-value = 0.23-0.76) The texture features with the highest significant correlations with age for all IVDs were global T1ρ mean (R = -0.726), T1 energy (R = -0.681), and T1 contrast (R = 0.709). CONCLUSION: This study showed that the 3D-MRF technique has potential to characterize age-related differences in T1 , T2, or T1ρ of IVD in healthy subjects. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Feminino , Humanos , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Degeneração do Disco Intervertebral/diagnóstico por imagem , Estudos Prospectivos , Disco Intervertebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Vértebras Lombares/diagnóstico por imagem
2.
Magn Reson Imaging ; 104: 105-114, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37820979

RESUMO

BACKGROUND AND PURPOSE: The purpose of this study was to test the hypothesis that hemodynamically compromised brains exhibit transient changes in magnetic susceptibility throughout the cardiac cycle, and to model these changes using Linear System Theory to extract an index that reflects cerebrovascular reserve. MATERIALS AND METHODS: Eleven patients with angiographically-confirmed intracranial atherosclerotic disease with >50% stenosis were imaged with susceptibility weighted, cardiac-gated single shot images of cerebral Oxygen Extraction Fraction (OEF) at different timepoints of the cardiac cycle. Cardiac gating of the OEF acquisition allowed interrogation of oxygenated blood and the detection of changes throughout the cardiac cycle. Independent component analysis (ICA) of raw k-space data across the cardiac phase allowed MRI signal decomposition into dynamic and static components for image reconstruction. An asymmetry index score of the resultant parametric images were compared to test the hypothesis that variation in hemoglobin-induced susceptibility across the cardiac cycle indeed reflects pathophysiology of cerebrovascular disease. A mathematical model was derived to parameterize physiologic changes induced by the presence of a hemodynamically significant stenosis in the brain as a tissue impulse response parameter (ß). RESULTS: OEF was elevated in the affected hemisphere (50.34 ± 12.13% vs 46.93 ± 12.34%), but failed to reach statistical significance (p < .0796). Transient changes in the OEF signal showed significant distinction between healthy and compromised tissue (0.56 ± 0.067 vs 0.44 ± 0.067, p < .019)). The derived tissue impulse response function was found to be significant as well (10.72 ± 3.48 10-3 ms-1, 9.69 ± 3.51 10-3 ms-1; p < .037). CONCLUSION: In this pilot study, we found transient OEF and ß to be significant predictors of hemispheric compromise.

3.
NMR Biomed ; 36(11): e4999, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37409683

RESUMO

The objective of the current study was to investigate age- and gender-related differences in lumbar intervertebral disk (IVD) strain with the use of static mechanical loading and continuous three-dimensional (3D) golden-angle radial sparse parallel (GRASP) MRI. A continuous 3D-GRASP stack-of-stars trajectory of the lumbar spine was performed on a 3-T scanner with static mechanical loading. Compressed sensing reconstruction, motion deformation maps, and Lagrangian strain maps during loading and recovery in the X-, Y-, and Z-directions were calculated for segmented IVD segments from L1/L2 to L5/S1. Mean IVD height was measured at rest. Spearman coefficients were used to evaluate the associations between age and global IVD height and global IVD strain. Mann-Whitney tests were used to compare global IVD height and global IVD strain in males and females. The prospective study enrolled 20 healthy human volunteers (10 males, 10 females; age 34.6 ± 11.4 [mean ± SD], range 22-56 years). Significant increases in compressive strain were observed with age, as evidenced by negative correlations between age and global IVD strain during loading (ρ = -0.76, p = 0.0046) and recovery (ρ = -0.68, p = 0.0251) in the loading X-direction. There was no significant correlation between age and global IVD height, global IVD strain during loading and recovery in the Y-direction, and global IVD strain during loading and recovery in the Z-direction. There were no significant differences between males and females in global IVD height and global IVD strain during loading and recovery in the X-, Y-, and Z-directions. It was concluded that our study demonstrated the significant role aging plays in internal dynamic strains in the lumbar IVD during loading and recovery. Older healthy individuals have reduced IVD stiffness and greater IVD compression during static mechanical loading of the lumbar spine. The GRASP-MRI technique demonstrates the feasibility to identify changes in IVD mechanical properties with early IVD degeneration due to aging.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Fatores Sexuais , Estudos Prospectivos , Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Imageamento por Ressonância Magnética/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia
4.
J Magn Reson Imaging ; 58(1): 44-60, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37010113

RESUMO

Osteoarthritis (OA) is a widely occurring degenerative joint disease that is severely debilitating and causes significant socioeconomic burdens to society. Magnetic resonance imaging (MRI) is the preferred imaging modality for the morphological evaluation of cartilage due to its excellent soft tissue contrast and high spatial resolution. However, its utilization typically involves subjective qualitative assessment of cartilage. Compositional MRI, which refers to the quantitative characterization of cartilage using a variety of MRI methods, can provide important information regarding underlying compositional and ultrastructural changes that occur during early OA. Cartilage compositional MRI could serve as early imaging biomarkers for the objective evaluation of cartilage and help drive diagnostics, disease characterization, and response to novel therapies. This review will summarize current and ongoing state-of-the-art cartilage compositional MRI techniques and highlight emerging methods for cartilage compositional MRI including MR fingerprinting, compressed sensing, multiexponential relaxometry, improved and robust radio-frequency pulse sequences, and deep learning-based acquisition, reconstruction, and segmentation. The review will also briefly discuss the current challenges and future directions for adopting these emerging cartilage compositional MRI techniques for use in clinical practice and translational OA research studies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Cartilagem Articular , Sistema Musculoesquelético , Osteoartrite do Joelho , Humanos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Longitudinais , Osteoartrite do Joelho/patologia
5.
Res Sq ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993561

RESUMO

The purpose of this study was to develop and test a 3D multi-parameter MR fingerprinting (MRF) method for brain imaging applications. The subject cohort included 5 healthy volunteers, repeatability tests done on 2 healthy volunteers and tested on two multiple sclerosis (MS) patients. A 3D-MRF imaging technique capable of quantifying T1, T2 and T1ρ was used. The imaging sequence was tested in standardized phantoms and 3D-MRF brain imaging with multiple shots (1, 2 and 4) in healthy human volunteers and MS patients. Quantitative parametric maps for T1, T2, T1ρ, were generated. Mean gray matter (GM) and white matter (WM) ROIs were compared for each mapping technique, Bland-Altman plots and intra-class correlation coefficient (ICC) were used to assess repeatability and Student T-tests were used to compare results in MS patients. Standardized phantom studies demonstrated excellent agreement with reference T1/T2/T1ρ mapping techniques. This study demonstrates that the 3D-MRF technique is able to simultaneously quantify T1, T2 and T1ρ for tissue property characterization in a clinically feasible scan time. This multi-parametric approach offers increased potential to detect and differentiate brain lesions and to better test imaging biomarker hypotheses for several neurological diseases, including MS.

6.
Magn Reson Med ; 89(1): 205-216, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36129110

RESUMO

PURPOSE: The goal of this study was to apply a fast data-driven optimization algorithm, called bias-accelerated subset selection, for MR brain T1ρ mapping to generate optimized sampling patterns (SPs) for compressed sensing reconstruction of brain 3D-T1ρ MRI. METHODS: Five healthy volunteers were recruited, and fully sampled Cartesian 3D-T1ρ MRIs were obtained. Variable density (VD) and Poisson disc (PD) undersampling was used as the input to SP optimization process. The reconstruction used 3 compressed sensing methods: spatiotemporal finite differences, low-rank plus sparse with spatial finite differences, and low rank. The performance of images and T1ρ maps using PD-SP and VD-SP and their optimized sampling patterns (PD-OSP and VD-OSP) were compared to the fully sampled reference using normalized root mean square error (NRMSE). RESULTS: The VD-OSP with spatiotemporal finite differences reconstruction (NRMSE = 0.078) and the PD-OSP with spatiotemporal finite differences reconstruction (NRMSE = 0.079) at the highest acceleration factors (AF = 30) showed the largest improvement compared to the respective nonoptimized SPs (VD NRMSE = 0.087 and PD NRMSE = 0.149). Prospective undersampling was tested at AF = 4, with VD-OSP NRMSE = 0.057 versus PD-OSP NRMSE = 0.060, with optimized sampling performing better that input PD or VD sampling. For brain T1ρ mapping, the VD-OSP with low rank reconstruction for AFs <10 and VD-OSP with spatiotemporal finite differences for AFs >10 perform better. CONCLUSIONS: The study demonstrated that the appropriate use of data-driven optimized sampling and suitable compressed sensing reconstruction technique can be employed to potentially accelerate 3D T1ρ mapping for brain imaging applications.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Aceleração , Processamento de Imagem Assistida por Computador/métodos
7.
Sci Rep ; 12(1): 16829, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207361

RESUMO

Two optimization criteria based on Cramér-Rao Bounds are compared between each other and with non-optimized schedules for T1ρ mapping using synthetic data, model phantoms, and in-vivo knee cartilage. The curve fitting is done on complex-valued data using an iterative Nonlinear Least Squares (NLS) approach. The optimization criteria are compared based on the Mean Normalized Absolute Error (MNAE) and variance of the estimated parameters. The optimized spin-lock time (TSL) schedules provided improved results over the non-optimized schedules for all cases that were tested. The simulations showed that optimized schedules can reach the same precision and reduce acquisition times by 16.5 min (42%) for the bi-exponential model, and 6.6 min (22%) for the stretched-exponential model. In the model phantoms experiments, the bi-exponential MNAE was reduced from 0.47 to 0.36, while stretched-exponential from 0.28 to 0.20 with a Modified Cramér-Rao Lower Bound (MCRLB). In-vivo knee cartilage experiments show a reduction in bi-exponential MNAE from 0.47 to 0.31, and stretched-exponential from 0.047 to 0.039. The optimized spin-lock times criteria reduced the error in all cases, being more significant in the synthetic data and model phantoms. The optimized TSL schedules can be either used to improve the quality of parameter maps or reduce scan time.


Assuntos
Articulação do Joelho , Imageamento por Ressonância Magnética , Cartilagem , Humanos , Joelho , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
8.
Biomaterials ; 281: 121370, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032910

RESUMO

Protein-based biomaterials offer several advantages over synthetic materials, owing to their unique stimuli-responsive properties, biocompatibility and modular nature. Here, we demonstrate that E5C, a recombinant protein block polymer, consisting of five repeats of elastin like polypeptide (E) and a coiled-coil domain of cartilage oligomeric matrix protein (C), is capable of forming a porous networked gel at physiological temperature, making it an excellent candidate for injectable biomaterials. Combination of E5C with Atsttrin, a chondroprotective engineered derivative of anti-inflammatory growth factor progranulin, provides a unique biochemical and biomechanical environment to protect against post-traumatic osteoarthritis (PTOA) onset and progression. E5C gel was demonstrated to provide prolonged release of Atsttrin and inhibit chondrocyte catabolism while facilitating anabolic signaling in vitro. We also provide in vivo evidence that prophylactic and therapeutic application of Atsttrin-loaded E5C gels protected against PTOA onset and progression in a rabbit anterior cruciate ligament transection model. Collectively, we have developed a unique protein-based gel capable of minimally invasive, sustained delivery of prospective therapeutics, particularly the progranulin-derivative Atsttrin, for therapeutic application in OA.


Assuntos
Lesões do Ligamento Cruzado Anterior , Cartilagem Articular , Osteoartrite , Animais , Materiais Biocompatíveis/uso terapêutico , Cartilagem Articular/metabolismo , Géis , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Polímeros/uso terapêutico , Progranulinas/metabolismo , Progranulinas/uso terapêutico , Coelhos
9.
Sci Rep ; 11(1): 13951, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230600

RESUMO

Post stroke muscle stiffness is a common problem, which left untreated can lead to disabling muscle contractures. The purpose of this pilot study was to evaluate the feasibility of bi-exponential T1ρ mapping in patients with arm muscle stiffness after stroke and its ability to measure treatment related changes in muscle glycosaminoglycans (GAGs). Five patients with muscle stiffness after stroke and 5 healthy controls were recruited for imaging of the upper arm with 3D-T1ρ mapping. Patients were scanned before and after treatment with hyaluronidase injections, whereas the controls were scanned once. Wilcoxon Mann-Whitney tests compared patients vs. controls and patients pre-treatment vs. post-treatment. With bi-exponential modeling, the long component, T1ρl was significantly longer in the patients (biceps P = 0.01; triceps P = 0.004) compared to controls. There was also a significant difference in the signal fractions of the long and short components (biceps P = 0.03, triceps P = 0.04). The results suggest that muscle stiffness is characterized by increased muscle free water and GAG content. Post-treatment, the T1ρ parameters shifted toward control values. This pilot study demonstrates the application of bi-exponential T1ρ mapping as a marker for GAG content in muscle and as a potential treatment monitoring tool for patients with muscle stiffness after stroke.


Assuntos
Glicosaminoglicanos/metabolismo , Imageamento por Ressonância Magnética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Projetos Piloto , Acidente Vascular Cerebral/terapia
10.
Sci Rep ; 11(1): 7412, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795721

RESUMO

Impaired oxidative metabolism is one of multi-variate factors leading to exercise intolerance in heart failure patients. The purpose of the study was to demonstrate the use of dynamic 31P magnetic resonance spectroscopy (MRS) and 31P magnetic resonance imaging (MRI) techniques to measure PCr resynthesis rate post-exercise as a biomarker for oxidative metabolism in skeletal muscle in HF patients and controls. In this prospective imaging study, we recruited six HF patients and five healthy controls. The imaging protocol included 31P-MRS, spectrally selective 3D turbo spin echo for 31P-MRI, and Dixon multi-echo GRE for fat-water imaging on a 3 T clinical MRI scanner. All the subjects were scanned pre-exercise, during plantar flexion exercise, and post-exercise recovery, with two rounds of exercise for 31P -MRS and 31P-MRI, respectively. Unpaired t-tests were used to compare 31P-MRS and 31P-MRI results between the HF and control cohorts. The results show that PCr resynthesis rate was significantly slower in the HF cohort compared to the controls using 31P-MRS (P = 0.0003) and 31P-MRI (P = 0.0014). 31P-MRI showed significant differences between the cohorts in muscle groups (soleus (P = 0.0018), gastrocnemius lateral (P = 0.0007) and gastrocnemius medial (P = 0.0054)). The results from this study suggest that 31P-MRS/31P-MRI may be used to quantify lower leg muscle oxidative metabolism in HF patients, with 31P-MRI giving an additional advantage of allowing further localization of oxidative metabolism deficits. Upon further validation, these techniques may serve as a potentially useful clinical imaging biomarker for staging and monitoring therapies in HF-patients.


Assuntos
Insuficiência Cardíaca/complicações , Perna (Membro)/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Biomarcadores , Estudos de Casos e Controles , Análise de Dados , Exercício Físico , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Tamanho do Órgão , Prognóstico
11.
J Magn Reson Imaging ; 54(2): 486-496, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33713520

RESUMO

BACKGROUND: Noninvasive measurement of internal dynamic strain can be potentially useful to characterize spine intervertebral disc (IVD) in the setting of injury or degenerative disease. PURPOSE: To develop and demonstrate a noninvasive technique to quantify three-dimensional (3D) internal dynamic strains in the IVD using a combination of static mechanical loading of the IVD using a magnetic resonance imaging (MRI)-compatible ergometer. STUDY TYPE: Prospective. SUBJECTS: Silicone gel phantom studies were conducted to assess strain variation with load and repeatability. Mechanical testing was done on the phantoms to confirm MR results. Eight healthy human volunteers (four men and four woman, age = 29 ± 5 years) underwent MRI using a rest, static loading, and recovery paradigm. Repeatability tests were conducted in three subjects. FIELD STRENGTH/SEQUENCE: MRI (3 T) with 3D continuous golden-angle radial sparse parallel (GRASP) and compressed sensing (CS) reconstruction. ASSESSMENT: CS reconstruction of the images, motion deformation, and Lagrangian strain maps were calculated for five IVD segments from L1/L2 to L5/S1. STATISTICAL TESTS: Ranges of displacement and strain in each subject and the resulting mean and standard deviation were calculated. Student t-tests were used to calculate changes in strain from loading to recovery. The correlation coefficient (CC) in the repeatability study was calculated. RESULTS: The most compressive strain experienced by the IVD segments under loaded conditions was in the L4/L5 segment (-7.5 ± 2.9%). The change in minimum strain from load to recovery was the most for the L4/L5 segment (-7.5% to -5.0%, P = 0.026) and the least for the L1/L2 segment (-4.4% to -3.9%, P = 0.51). In vivo repeatability in three subjects shows strong correlation between scans in subjects done 6 months apart, with CCs equal to 0.86, 0.94, and 0.94 along principal directions. DATA CONCLUSION: This study shows the feasibility of using static mechanical loading with continuous GRASP-MRI acquisition with CS reconstruction to measure 3D internal dynamic strains in the spine IVD. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Adulto , Feminino , Humanos , Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Região Lombossacral , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Adulto Jovem
12.
Magn Reson Imaging Clin N Am ; 29(1): 117-127, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33237012

RESUMO

Regulatory approval of ultrahigh field (UHF) MR imaging scanners for clinical use has opened new opportunities for musculoskeletal imaging applications. UHF MR imaging has unique advantages in terms of signal-to-noise ratio, contrast-to-noise ratio, spectral resolution, and multinuclear applications, thus providing unique information not available at lower field strengths. But UHF also comes with a set of technical challenges that are yet to be resolved and may not be suitable for all imaging applications. This review focuses on the latest research in musculoskeletal MR imaging applications at UHF including morphologic imaging, T2, T2∗, and T1ρ mapping, chemical exchange saturation transfer, sodium imaging, and phosphorus spectroscopy imaging applications.


Assuntos
Imageamento por Ressonância Magnética/métodos , Doenças Musculoesqueléticas/diagnóstico por imagem , Humanos , Sistema Musculoesquelético/diagnóstico por imagem
13.
J Magn Reson Imaging ; 53(4): 1130-1139, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33190362

RESUMO

BACKGROUND: 3D-T1ρ mapping is useful to quantify various neurologic disorders, but data are currently time-consuming to acquire. PURPOSE: To compare the performance of five compressed sensing (CS) algorithms-spatiotemporal finite differences (STFD), exponential dictionary (EXP), 3D-wavelet transform (WAV), low-rank (LOW) and low-rank plus sparse model with spatial finite differences (L + S SFD)-for 3D-T1ρ mapping of the human brain with acceleration factors (AFs) of 2, 5, and 10. STUDY TYPE: Retrospective. SUBJECTS: Eight healthy volunteers underwent T1ρ imaging of the whole brain. FIELD STRENGTH/SEQUENCE: The sequence was fully sampled 3D Cartesian ultrafast gradient echo sequence with a customized T1ρ preparation module on a clinical 3T scanner. ASSESSMENT: The fully sampled data was undersampled by factors of 2, 5, and 10 and reconstructed with the five CS algorithms. Image reconstruction quality was evaluated and compared to the SENSE reconstruction of the fully sampled data (reference) and T1ρ estimation errors were assessed as a function of AF. STATISTICAL TESTS: Normalized root mean squared errors (nRMSE) and median normalized absolute deviation (MNAD) errors were calculated to compare image reconstruction errors and T1ρ estimation errors, respectively. Linear regression plots, Bland-Altman plots, and Pearson correlation coefficients (CC) are shown. RESULTS: For image reconstruction quality, at AF = 2, EXP transforms had the lowest mRMSE (1.56%). At higher AF values, STFD performed better, with the smallest errors (3.16% at AF = 5, 4.32% at AF = 10). For whole-brain quantitative T1ρ mapping, at AF = 2, EXP performed best (MNAD error = 1.62%). At higher AF values (AF = 5, 10), the STFD technique had the least errors (2.96% at AF = 5, 4.24% at AF = 10) and the smallest variance from the reference T1ρ estimates. DATA CONCLUSION: This study demonstrates the use of different CS algorithms that may be useful in reducing the scan time required to perform volumetric T1ρ mapping of the brain. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 1.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Estudos Retrospectivos
14.
Artigo em Inglês | MEDLINE | ID: mdl-31979044

RESUMO

Diagnosis and management of musculoskeletal pain is a major clinical challenge. Following this need, the first aim of our study was to provide an innovative magnetic resonance technique called T1ρ to quantify possible alterations in elbow pain, a common musculoskeletal pain syndrome that has not a clear etiology. Five patients were recruited presenting chronic elbow pain (>3 months), with an age between 30 and 70 years old. Patients underwent two T1ρ-mapping evaluations, one before and one after the series of Fascial Manipulation® (FM) treatments. After the first MRI evaluation, a Disability of the Arm, Shoulder and Hand (DASH) questionnaire was administered to quantify the symptoms and pain intensity. Patients then received three sessions of FM, once a week for 40 min each. A statistically significant difference was found between bound and unbound water concentration before and after FM treatment. Our preliminary data suggest that the application of the manual method seems to decrease the concentration of unbound water inside the deep fascia in the most chronic patients. This could explain the change in viscosity perceived by many practitioners as well as the decrease of symptoms due to the restoration of the normal property of the loose connective tissue. Being able to identify an altered deep fascial area may better guide therapies, contributing to a more nuanced view of the mechanisms of pain.


Assuntos
Fáscia , Glicosaminoglicanos , Manipulações Musculoesqueléticas , Dor Musculoesquelética , Água , Adulto , Idoso , Cotovelo , Glicosaminoglicanos/análise , Humanos , Pessoa de Meia-Idade , Dor Musculoesquelética/diagnóstico , Dor Musculoesquelética/terapia , Água/análise
15.
J Magn Reson Imaging ; 51(2): 426-434, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31282080

RESUMO

BACKGROUND: Quantification of dynamic biomechanical strain in articular cartilage in vivo; in situ using noninvasive MRI techniques is desirable and may potentially be used to assess joint pathology. PURPOSE: To demonstrate the use of static mechanical loading and continuous 3D-MRI acquisition of the human knee joint in vivo to measure the strain in the tibiofemoral articular cartilage. STUDY TYPE: Prospective. SUBJECTS: Five healthy human volunteers (four women, one man; age 25.6 ± 1.7) underwent MRI at rest, under static mechanical loading condition, and during recovery. FIELD STRENGTH/SEQUENCE: A field strength of 3T was used. The sequence used was 3D-continuous golden angle radial sparse parallel (GRASP) MRI and compressed sensing (CS) reconstruction. ASSESSMENT: Tibiofemoral cartilage deformation maps under loading and during recovery were calculated using an optical flow algorithm. The corresponding Lagrangian strain was calculated in the articular cartilage. STATISTICAL TESTS: Range of displacement and strain in each subject, and the resulting mean and standard deviation, were calculated. RESULTS: During the loading condition, the cartilage displacement in the direction of loading ranged from a minimum of -673.6 ± 121.9 µm to a maximum of 726.5 ± 169.5 µm. Corresponding strain ranged from a minimum of -7.0 ± 4.2% to a maximum of 5.4 ± 1.6%. During the recovery condition, the cartilage displacement in the same direction reduced to a minimum of -613.0 ± 129.5 µm and a maximum of 555.7 ± 311.4 µm. The corresponding strain range reduced to a minimum of -1.6 ± 7.5% to a maximum of 4.2 ± 2.6%. DATA CONCLUSION: This study shows the feasibility of using static mechanical loading with continuous GRASP-MRI acquisition to measure the strain in the articular cartilage. By measuring strain during the loading and recovery phases, dynamic strain information in the articular cartilage might be able to be investigated. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:426-434.


Assuntos
Cartilagem Articular , Imageamento por Ressonância Magnética , Adulto , Cartilagem Articular/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Articulação do Joelho/diagnóstico por imagem , Masculino , Estudos Prospectivos , Adulto Jovem
16.
Sci Rep ; 9(1): 14513, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601831

RESUMO

The purpose of this study was to provide imaging evidence of increased glycosaminoglycan (GAG) content in patients with post-stroke muscle stiffness; and to determine the effect of hyaluronidase treatment on intramuscular GAG content. In this prospective study, we used 3D-T1ρ (T1rho) magnetic resonance (MR) mapping of the upper arm muscles to quantify GAG content in patients with post-stroke muscle stiffness before and after hyaluronidase injection treatment. For this study, healthy controls (n = 5), and patients with post-stroke muscle stiffness (n = 5) were recruited (March 2017-April 2018). T1ρ MR imaging and Dixon water-fat MR imaging of the affected upper arms were performed before and after off-label treatment with hyaluronidase injections. T1ρ mapping was done using a three-parameter non-linear mono-exponential fit. Wilcoxon Mann-Whitney test was used to compare patients' vs controls and pre- vs post-treatment conditions. The T1ρ values in the biceps were significantly higher in patients before treatment (34.04 ± 4.39 ms) compared with controls (26.70 ± 0.54 ms; P = 0.006). Significant improvement was seen in the biceps of patients before (35.48 ± 3.38 ms) and after treatment (29.45 ± 1.23 ms; P = 0.077). Dixon water-fat distribution was not significantly different in the patients compared to the controls (biceps P = 0.063; triceps P = 0.190). These results suggest that T1ρ mapping can be used to quantify GAG content in the muscles of patients with post-stroke muscle stiffness, and that muscle hyaluronan content is increased in stiff muscles compared with controls, providing imaging corroboration for the hyaluronan hypothesis of muscle stiffness.


Assuntos
Glicosaminoglicanos/metabolismo , Imageamento por Ressonância Magnética , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Adulto , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Feminino , Glicosaminoglicanos/isolamento & purificação , Humanos , Hialuronoglucosaminidase/administração & dosagem , Masculino , Pessoa de Meia-Idade , Força Muscular/efeitos dos fármacos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/efeitos dos fármacos
17.
Scand J Pain ; 19(3): 523-532, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30901318

RESUMO

Background and aims In 2008, the International Association for the Study of Pain Special Interest Group on Neuropathic Pain (NeuPSIG) proposed a clinical grading system to help identify patients with neuropathic pain (NeP). We previously applied this classification system, along with two NeP screening tools, the painDETECT (PD-Q) and Leeds Assessment of Neuropathic Symptoms and Signs pain scale (LANSS), to identify NeP in patients with neck/upper limb pain. Both screening tools failed to identify a large proportion of patients with clinically classified NeP, however a limitation of our study was the use of a single clinician performing the NeP classification. In 2016, the NeuPSIG grading system was updated with the aim of improving its clinical utility. We were interested in field testing of the revised grading system, in particular in the application of the grading system and the agreement of interpretation of clinical findings. The primary aim of the current study was to explore the application of the NeuPSIG revised grading system based on patient records and to establish the inter-rater agreement of detecting NeP. A secondary aim was to investigate the level of agreement in detecting NeP between the revised NeuPSIG grading system and the LANSS and PD-Q. Methods In this retrospective study, two expert clinicians (Specialist Pain Medicine Physician and Advanced Scope Physiotherapist) independently reviewed 152 patient case notes and classified them according to the revised grading system. The consensus of the expert clinicians' clinical classification was used as "gold standard" to determine the diagnostic accuracy of the two NeP screening tools. Results The two clinicians agreed in classifying 117 out of 152 patients (ICC 0.794, 95% CI 0.716-850; κ 0.62, 95% CI 0.50-0.73), yielding a 77% agreement. Compared to the clinicians' consensus, both LANSS and PD-Q demonstrated limited diagnostic accuracy in detecting NeP (LANSS sensitivity 24%, specificity 97%; PD-Q sensitivity 53%, specificity 67%). Conclusions The application of the revised NeP grading system was feasible in our retrospective analysis of patients with neck/upper limb pain. High inter-rater percentage agreement was demonstrated. The hierarchical order of classification may lead to false negative classification. We propose that in the absence of sensory changes or diagnostic tests in patients with neck/upper limb pain, classification of NeP may be further improved using a cluster of clinical findings that confirm a relevant nerve lesion/disease, such as reflex and motor changes. The diagnostic accuracy of LANSS and PD-Q in identifying NeP in patients with neck/upper limb pain remains limited. Clinical judgment remains crucial to diagnosing NeP in the clinical practice. Implications Our observations suggest that in view of the heterogeneity in patients with neck/upper limb pain, a considerable amount of expertise is required to interpret the revised grading system. While the application was feasible in our clinical setting, it is unclear if this will be feasible to apply in primary health care settings where early recognition and timely intervention is often most needed. The use of LANSS and PD-Q in the identification of NeP in patients with neck/upper limb pain remains questionable.


Assuntos
Programas de Rastreamento , Pescoço , Neuralgia/diagnóstico , Medição da Dor/normas , Inquéritos e Questionários/normas , Extremidade Superior , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade
18.
J Magn Reson Imaging ; 49(3): 744-751, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30211442

RESUMO

BACKGROUND: Safe and accurate imaging of the peripheral arterial system is important for diagnosis and treatment planning of patients with peripheral artery disease (PAD). PURPOSE: To evaluate image quality and diagnostic performance of unenhanced magnetic resonance angiography (MRA) based on velocity-selective (VS) magnetization preparation (termed VS-MRA). STUDY TYPE: Prospective. POPULATION: Thirty-one symptomatic PAD patients underwent VS-MRA. Twenty-four of them underwent clinical digital subtraction angiography (DSA) examination, 18.8 ± 5.2 days after the MR scans. FIELD STRENGTH/SEQUENCE: 1.5T MRI that included VS-MRA (homemade research sequence) and phase-contrast flow imaging (clinical sequence). ASSESSMENT: Image quality (0: nondiagnostic, 3: excellent) and stenosis severity (0: normal, 3: occlusion) of VS-MRA images were assessed independently by three reviewers. Arterial signal-to-noise-ratio (SNR) and artery-to-muscle contrast-to-noise ratio (CNR) were calculated. STATISTICAL TESTS: The sensitivity and specificity of VS-MRA were calculated for the detection of significant stenosis (>50%) with DSA as the reference standard. Interobserver agreement among the three reviewers was evaluated by using Cohen κ-statistics. RESULTS: The image quality score of VS-MRA was 2.7 ± 0.5 for Reader 1, 2.8 ± 0.5 for Reader 2, and 2.8 ± 0.4 for Reader 3; SNR and CNR were 37.8 ± 12.5 and 30.5 ± 11.8, respectively. Segment-based analysis revealed that VS-MRA had sensitivities of 85.3%, 74.5%, and 78.4%, respectively, for the three reviewers, and specificities of 93.5%, 96.8%, and 95.2%. The interobserver agreement for the stenosis grading was good, as demonstrated by Cohen κ values of 0.76 (Reader 1 vs. Reader 2), 0.82 (Reader 1 vs. Reader 3), and 0.79 (Reader 2 vs. Reader 3). DATA CONCLUSION: Unenhanced VS-MRA allows clear depiction of the peripheral arteries and accurate stenosis grading, as evidenced by high image quality scores and strong agreement with DSA. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:744-751.


Assuntos
Angiografia Digital , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética , Doença Arterial Periférica/diagnóstico por imagem , Idoso , Meios de Contraste/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Sci Rep ; 8(1): 1176, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352234

RESUMO

Detection of multiple relaxation pools using MRI is useful in a number of neuro-pathologies including multiple sclerosis (MS), Alzheimer's, and stroke. In this study we evaluate the feasibility of using T1ρ imaging for the detection of bi-exponential decays in the human brain. A prospective T1ρ imaging study was performed on model relaxation phantoms (eggs) and 7 healthy volunteers. The data was fitted using a single pool and a 2-pool model to estimate mono- and bi-exponential T1ρ maps, respectively. Bi-exponential decays were identified in the gray matter (GM) and white matter (WM) of the brain with 40.5% of GM, and 65.1% of WM pixels showing two T1ρ relaxation pools (significance level P < 0.05). Detection of T1ρ based bi-exponential decays in the brain provides complimentary information to T2 based contrast regarding the in vivo micro-environment in the brain.


Assuntos
Mapeamento Encefálico , Encéfalo/patologia , Imageamento por Ressonância Magnética , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imagens de Fantasmas , Adulto Jovem
20.
J Vasc Surg Cases Innov Tech ; 3(2): 87-89, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29349385

RESUMO

Non-gadolinium-enhanced magnetic resonance angiography (nMRA) is a noninvasive, contrast-free imaging modality used for visualizing pedal arterial anatomy. We report application of the nMRA technique for detailed arterial imaging in a patient with dorsalis pedis aneurysm. Compared with digital subtraction angiography, we demonstrate that nMRA provides sufficient arterial detail needed to develop a complex operative plan before vascular intervention without risk of contrast agent or ionizing radiation exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA