Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 34(1): 367-380, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37266836

RESUMO

Exposure of antimalarial herbal drugs (AMHDs) to ultraviolet radiation (UVR) affects the potency and integrity of the AMHDs. Instant classification of the AMHDs exposed to UVR (UVR-AMHDs) from unexposed ones (Non-UVR-AMHDs) would be beneficial for public health safety, especially in warm regions. For the first time, this work combined laser-induced autofluorescence (LIAF) with chemometric techniques to classify UVR-AMHDs from Non-UVR-AMHDs. LIAF spectra data were recorded from 200 ml of each of the UVR-AMHDs and Non-UVR-AMHDs. To extract useful data from the spectra fingerprint, principal components (PCs) analysis was used. The performance of five chemometric algorithms: random forest (RF), neural network (NN), support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbour (KNN), were compared after optimization by validation. The chemometric algorithms showed that KNN, SVM, NN, and RF were superior with a classification accuracy of 100% for UVR-AMHDs while LDA had a classification accuracy of 98.8% after standardization of the spectra data and was used as an input variable for the model. Meanwhile, a classification accuracy of 100% was obtained for KNN, LDA, SVM, and NN when the raw spectra data was used as input except for RF for which a classification accuracy of 99.9% was obtained. Classification accuracy above 99.74 ± 0.26% at 3 PCs in both the training and testing sets were obtained from the chemometric models. The results showed that the LIAF, combined with the chemometric techniques, can be used to classify UVR-AMHDs from Non-UVR-AMHDs for consumer confidence in malaria-prone regions. The technique offers a non-destructive, rapid, and viable tool for identifying UVR-AMHDs in resource-poor countries.


Assuntos
Antimaláricos , Raios Ultravioleta , Quimiometria , Análise Discriminante , Lasers , Máquina de Vetores de Suporte
2.
Polymers (Basel) ; 11(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739426

RESUMO

This study investigated the pore characterization of polyurethane (PU) foam as a necessary step in water filtration membrane fabrication. Porous material characterization is essential for predicting membrane performance, strength, durability, surface feel, and to understand the transport mechanisms using modeling and simulations. Most existing pore characterization techniques are relatively costly, time-consuming, subjective, and have cumbersome sample preparations. This study focused on using three relatively inexpensive imaging systems: a black box, Canon camera (EOS760D), and LaserJet scanner (M1132 MFP). Two standard, state-of-the-art imaging systems were used for comparison: a stereomicroscope and a scanning electron microscope. Digital images produced by the imaging systems were used with a MATLAB algorithm to determine the surface porosity, pore area, and shape factor of the polyurethane foam in an efficient manner. The results obtained established the compatibility of the image analysis algorithm with the imaging systems. The black box results were found to be more comparable to both the stereomicroscope and SEM systems than those of the Canon camera and scanner imaging systems. Indeed, the current research effort demonstrates the possibility of substrate characterization with inexpensive imaging systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA