Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Adipocyte ; 10(1): 505-523, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34812105

RESUMO

Adipocytes in the breast tumour microenvironment promotes acquired treatment resistance. We used an in vitro adipocyte-conditioned media approach to investigate the direct paracrine effects of adipocyte secretory factors on MDA-MB-231 breast cancer cells treated with doxorubicin to clarify the underlying treatment resistance mechanisms. Cell-viability assays, and Western blots were performed to determine alterations in apoptotic, proliferation and lipid metabolism protein markers. Free fatty acids (FFA) and inflammatory markers in the collected treatment-conditioned media were also quantified. Adipocyte secretory factors increased the cell-viability of doxorubicin-treated cells (p < 0.0001), which did not correspond to apoptosis or proliferation pathways. Adipocyte secretory factors increased the protein expression of hormone-sensitive lipase (p < 0.05) in doxorubicin-treated cells. Adipocyte secretory factors increased the utilization of leptin (p < 0.05) and MCP-1 (p < 0.01) proteins and possibly inhibited release of linoleic acid by doxorubicin-treated cells (treatment-conditioned media FFA profiles). Adipocyte secretory factors induced doxorubicin treatment resistance, by increasing the utilization of inflammatory mediators and inhibiting the release of FFA by doxorubicin-treated cells. This further promotes inflammation and lipid metabolic reprogramming (lipid storage) in the tumour microenvironment, which breast cancer cells use to evade the toxic effects induced by doxorubicin and confers to acquired treatment resistance.


Assuntos
Metabolismo dos Lipídeos , Neoplasias de Mama Triplo Negativas , Células 3T3-L1 , Adipócitos , Animais , Doxorrubicina/farmacologia , Humanos , Camundongos , Microambiente Tumoral
3.
Front Oncol ; 10: 306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257945

RESUMO

Breast cancer cells modulate lipid and fatty acid metabolism to sustain proliferation. The role of adipocytes in cancer treatment efficacy remains, however, to be fully elucidated. We investigated whether diet-induced obesity (DIO) affects the efficacy of doxorubicin treatment in a breast tumor-bearing mouse model. Female C57BL6 mice were fed a high fat or low fat diet for the full duration of the study (12 weeks). After 8 weeks, mice were inoculated with E0771 triple-negative breast cancer cells in the fourth mammary gland to develop breast tumor allographs. Tumor-bearing mice received either vehicle (Hank's balanced salt solution) or doxorubicin (chemotherapy). Plasma inflammatory markers, tumor, and mammary adipose tissue fatty acid composition, as well as protein expression of lipid metabolism markers were determined. The high fat diet (HFD) attenuated the treatment efficacy of doxorubicin. Both leptin and resistin concentrations were significantly increased in the HFD group treated with doxorubicin. Suppressed lipogenesis (decreased stearoyl CoA-desaturase-1) and lipolysis (decreased hormone-sensitive lipase) were observed in mammary adipose tissue of the DIO animals, whereas increased expression was observed in the tumor tissue of doxorubicin treated HFD mice. Obesogenic conditions induced altered tissue fatty acid (FA) compositions, which reduced doxorubicin's treatment efficacy. In mammary adipose tissue breast cancer cells suppressed the storage of FAs, thereby increasing the availability of free FAs and favored inflammation under obesogenic conditions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30553399

RESUMO

Globally, breast cancer continues to be a major concern in women's health. Lifestyle related risk factors, specifically excess adipose tissue (adiposity) has reached epidemic proportions and has been identified as a major risk factor in the development of breast cancer. Dysfunctional adipose tissue has evoked research focusing on its association with metabolic-related conditions, breast cancer risk and progression. Adipose dysfunction in coordination with immune cells and inflammation, are responsible for accelerated cell growth and survival of cancer cells. Recently, evidence also implicates adiposity as a potential risk factor for chemotherapy resistance. Chemotherapeutic agents have been shown to negatively impact adipose tissue. Since adipose tissue is a major storage site for fatty acids, it is not unlikely that these negative effects may disrupt adipose tissue homeostasis. It is therefore argued that fatty acid composition may be altered due to the chemotherapeutic pharmacokinetics, which in turn could have severe health related outcomes. The underlying molecular mechanisms elucidating the effects of fatty acid composition in adiposity-linked drug resistance are still unclear and under explored. This review focuses on the potential role of adiposity in breast cancer and specifically emphasizes the role of fatty acids in cancer progression and treatment resistance.


Assuntos
Adiposidade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ácidos Graxos/metabolismo , Tecido Adiposo/metabolismo , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Membrana Celular/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Fatores de Risco
5.
BMC Public Health ; 18(1): 453, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618342

RESUMO

BACKGROUND: Sufficient evidence associate body shape to detrimental lifestyle diseases including the metabolic syndrome (MetS). The prevalence of the MetS, as well as effects of the MetS and body shape on body composition, insulin-like growth factor-1 (IGF-1), C-reactive protein (CRP) and sex hormone parameters were investigated in a female farm worker population in the Western Cape. METHODS: Women between the ages of 20-60 years were classified according to the International Diabetes Federation's definition of the MetS. Assessments included body shape (android/gynoid), blood pressure, anthropometric, bioelectrical impedance analyses and blood analyses for fasting glucose and insulin, lipid profile, IGF-1, CRP, and sex hormone parameters. RESULTS: The prevalence of the MetS was 52%, with abdominal obesity 68.8%, hypertension 66.4% and low high density lipoprotein-cholesterol (HDL-c) levels (64.1%) being the more prevalent MetS risk factors. The MetS, irrespective of body shape, was found to be associated with body mass index (p < 0.01), fat mass (%) (p < 0.01), waist circumference (p < 0.001), HDL-c (p < 0.001), systolic blood pressure (p < 0.05) and diastolic blood pressure (p < 0.01). No significant differences were observed for IGF-1, CRP and sex hormone parameters. CONCLUSION: The prevalence of the MetS and its individual risk factors were found to be significantly high in this female farm worker population. Additionally, the study showed that the MetS, body shape and/or both could predict differences in body composition, physiological and biochemical parameters in women.


Assuntos
Tamanho Corporal , Fazendeiros/estatística & dados numéricos , Disparidades nos Níveis de Saúde , Síndrome Metabólica/epidemiologia , Mulheres Trabalhadoras/estatística & dados numéricos , Adulto , Feminino , Indicadores Básicos de Saúde , Humanos , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-30619088

RESUMO

Excess adipose tissue is a hallmark of an overweight and/or obese state as well as a primary risk factor for breast cancer development and progression. In an overweight/obese state adipose tissue becomes dysfunctional due to rapid hypertrophy, hyperplasia, and immune cell infiltration which is associated with sustained low-grade inflammation originating from dysfunctional adipokine synthesis. Evidence also supports the role of excess adipose tissue (overweight/obesity) as a casual factor for the development of chemotherapeutic drug resistance. Obesity-mediated effects/modifications may contribute to chemotherapeutic drug resistance by altering drug pharmacokinetics, inducing chronic inflammation, as well as altering tumor-associated adipocyte adipokine secretion. Adipocytes in the breast tumor microenvironment enhance breast tumor cell survival and decrease the efficacy of chemotherapeutic agents, resulting in chemotherapeutic resistance. A well-know chemotherapeutic agent, doxorubicin, has shown to negatively impact adipose tissue homeostasis, affecting adipose tissue/adipocyte functionality and storage. Here, it is implied that doxorubicin disrupts adipose tissue homeostasis affecting the functionality of adipose tissue/adipocytes. Although evidence on the effects of doxorubicin on adipose tissue/adipocytes under obesogenic conditions are lacking, this narrative review explores the potential role of obesity in breast cancer progression and treatment resistance with inflammation as an underlying mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA