Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sports Med Open ; 9(1): 79, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640958

RESUMO

BACKGROUND: High prevalence rates of ß2-agonist use among athletes in competitive sports makes it tempting to speculate that illegitimate use of ß2-agonists boosts performance. However, data regarding the potential performance-enhancing effects of inhaled ß2-agonists and its underlying molecular basis are scarce. METHODS: In total, 24 competitive endurance athletes (12f/12m) participated in a clinical double-blinded balanced four-way block cross-over trial to investigate single versus combined effects of ß2-agonists salbutamol (SAL) and formoterol (FOR), to evaluate the potential performance enhancement of SAL (1200 µg, Cyclocaps, Pb Pharma GmbH), FOR (36 µg, Sandoz, HEXAL AG) and SAL + FOR (1200 µg + 36 µg) compared to placebo (PLA, Gelatine capsules containing lactose monohydrate, Pharmacy of the University Hospital Ulm). Measurements included skeletal muscle gene and protein expression, endocrine regulation, urinary/serum ß2-agonist concentrations, cardiac markers, cardiopulmonary and lung function testing and the 10-min time trial (TT) performance on a bicycle ergometer as outcome variables. Blood and urine samples were collected pre-, post-, 3 h post- and 24 h post-TT. RESULTS: Mean power output during TT was not different between study arms. Treatment effects regarding lung function (p < 0.001), echocardiographic (left ventricular end-systolic volume p = 0.037; endocardial global longitudinal strain p < 0.001) and metabolic variables (e.g. NR4A2 and ATF3 pathway) were observed without any influence on performance. In female athletes, total serum ß2-agonist concentrations for SAL and FOR were higher. Microarray muscle gene analysis showed a treatment effect for target genes in energy metabolism with strongest effect by SAL + FOR (NR4A2; p = 0.001). Of endocrine variables, follicle-stimulating hormone (3 h Post-Post-TT), luteinizing hormone (3 h Post-Pre-TT) and insulin (Post-Pre-TT) concentrations showed a treatment effect (all p < 0.05). CONCLUSIONS: No endurance performance-enhancing effect for SAL, FOR or SAL + FOR within the permitted dosages compared to PLA was found despite an acute effect on lung and cardiac function as well as endocrine and metabolic variables in healthy participants. The impact of combined ß2-agonists on performance and sex-specific thresholds on the molecular and cardiac level and their potential long-term performance enhancing or health effects have still to be determined. TRIAL REGISTRATION: Registered at Eudra CT with the number: 2015-005598-19 (09.12.2015) and DRKS with number DRKS00010574 (16.11.2021, retrospectively registered).

2.
Front Sports Act Living ; 3: 801617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35146423

RESUMO

INTRODUCTION: The Concept 2 (C2) rowing ergometer is used worldwide for home-based training, official competitions, and performance assessment in sports and science. Previous studies reported a disparate underestimation of mechanical power output positively related to an unclearly defined stroke variability. The aim of this study was to quantify the accuracy of the C2 while controlling for the potentially influencing variables of the rowing stroke by using a test rig for air-braked rowing ergometers and thus excluding biological variability. METHODS: A unique motorized test rig for rowing ergometers was employed. Accuracy was assessed as the difference in mechanical power output between C2 and a reference system during steady (i.e., minimal variations of stroke power within a series of 50 spacemark, no -strokes) and unsteady simulated rowing (i.e., persistent variations during measurement series) while manipulating the stroke variables shape, force, or rate. RESULTS: During steady simulated rowing, differences between C2 and the reference system ranged 2.9-4.3%. Differences were not significantly affected by stroke shapes (P = 0.153), but by stroke rates ranging 22-28 min-1 (P < 0.001). During unsteady simulated rowing with alterations of stroke force and rate, mean differences of 2.5-3.9% were similar as during steady simulated rowing, but the random error increased up to 18-fold. C2 underestimated mechanical power output of the first five strokes by 10-70%. Their exclusion reduced mean differences to 0.2-1.9%. CONCLUSION: Due to the enormous underestimation of the start strokes, the nominal accuracy of the C2 depends on the total number of strokes considered. It ranges 0.2-1.9%, once the flywheel has been sufficiently accelerated. Inaccuracy increases with uneven rowing, but the stroke shape has a marginal impact. Hence, rowers should row as even as possible and prefer higher stroke rates to optimize C2 readings. We recommend external reference systems for scientific and high-performance assessments, especially for short tests designs where the start strokes will have a major impact.

3.
J Biomech ; 106: 109833, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517994

RESUMO

Wind braked rowing ergometers are used worldwide for training and testing of rowers, but data on validity and reliability of the calculated mechanical power output are scarce. Studies published so far are based on data generated by human rowers, inevitably adding biological variability without any option to clamp particular variables like stroke structure or force. To this end, we developed a test rig for rowing ergometers aiming to generate valid and reliable stroke structures (i.e. force-displacement curves). Briefly, the rig consists out of a frame connected to the ergometer. The handlebar of the rowing ergometer is attached to a sledge that can be displaced on a linear drive by a motor that is controlled by torque curves which are derived from elite rowers. A load cell between handlebar and chain and an incremental linear transducer allow criterion measures of force and distance of displacement to calculate mechanical power output. To evaluate the validity of the machine generated force-displacement curves, three different stroke structures were compared to the respective human reference curves. To evaluate reliability, series of 50 consecutive strokes were performed for 10 times. Validity of the curves was indicated by small differences in stroke-force, -distance, and -work (≤ |-7.8|%) between machine generated and human generated curves. Mean power output of the test series was 445 ± 1 W with a coefficient of variation of 0.53% between series. Hence, the test rig allows to generate valid and reliable rowing strokes on wind braked rowing ergometers.


Assuntos
Esportes Aquáticos , Vento , Ergometria , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA