Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1053490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532028

RESUMO

Introduction: Splenic B cells exhibit a high expression of the G protein-coupled sphingosine-1-phosphate (S1P) receptor type 4 (S1PR4). Little is known about the functional relevance of S1PR4 expression on those cells. Methods: In this study, S1PR4-deficient mice were used to study the role of S1PR4-mediated S1P signaling in B cell motility in vitro and for the maintenance of the splenic architecture under steady state conditions as well as in polymicrobial abdominal sepsis in vivo. Finally, the impact of S1PR4 deficiency on antibody production after immunization with T cell dependent antigens was assessed. Results: Loss of S1PR4 resulted in minor alterations of the splenic architecture concerning the presence of B cell follicles. After sepsis induction, the germinal center response was severely impaired in S1PR4-deficient animals. Splenic B cells showed reduced motility in the absence of S1PR4. However, titres of specific antibodies showed only minor reductions in S1PR4-deficient animals. Discussion: These observations suggest that S1P signaling mediated by S1PR4 modifies chemokine-induced splenic B cell chemotaxis, thus modulating splenic microarchitecture, GC formation and T-cell dependent antibody production.


Assuntos
Formação de Anticorpos , Sepse , Camundongos , Animais , Lisofosfolipídeos/metabolismo , Centro Germinativo/metabolismo , Antígenos
2.
Redox Biol ; 50: 102234, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35063803

RESUMO

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) are well-described agents in physiology and pathology. Chronic inflammation causes incessant H2O2 generation associated with disease occurrences such as diabetes, autoimmunity, and cancer. In cancer, conditioning of the tumor microenvironment, e.g., hypoxia and ROS generation, has been associated with disease outcomes and therapeutic efficacy. Many reports have investigated the roles of the action of H2O2 across many cell lines and disease models. The genes predisposing tumor cell lines to H2O2-mediated demise are less deciphered, however. To this end, we performed in-house transcriptional profiling of 35 cell lines and simultaneously investigated each cell line's H2O2 inhibitory concentration (IC25) based on metabolic activity. More than 100-fold differences were observed between the most resistant and sensitive cell lines. Correlation and gene ontology pathway analysis identified a rigid association with genes intertwined in cell cycle progression and proliferation, as such functional categories dominated the top ten significant processes. The ten most substantially correlating genes (Spearman r > 0.70 or < -0.70) were validated using qPCR, showing complete congruency with microarray analysis findings. Western blotting confirmed the correlation of cell cycle-related proteins negatively correlating with H2O2 IC25. Top genes related to ROS production or antioxidant defense were only modest in correlation (Spearman r > 0.40 or < -0.40). In conclusion, our in-house transcriptomic correlation analysis revealed a set of cell cycle-associated genes associated with a priori resistance or sensitivity to H2O2-induced cellular demise with the detailed and causative roles of individual genes remaining unclear.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Antioxidantes/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
3.
Sci Rep ; 11(1): 16175, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376743

RESUMO

Postoperative peritonitis is characterized by a more severe clinical course than other forms of secondary peritonitis. The pathophysiological mechanisms behind this phenomenon are incompletely understood. This study used an innovative model to investigate these mechanisms, combining the models of murine Colon Ascendens Stent Peritonitis (CASP) and Surgically induced Immune Dysfunction (SID). Moreover, the influence of the previously described anti-inflammatory reflex transmitted by the vagal nerve was characterized. SID alone, or 3 days before CASP were performed in female C57BL/6 N mice. Subdiaphragmatic vagotomy was performed six days before SID with following CASP. The immune status was assessed by FACS analysis and measurement of cytokines. Local intestinal inflammatory changes were characterized by immunohistochemistry. Mortality was increased in CASP animals previously subjected to SID. Subclinical bacteremia occurred after SID, and an immunosuppressive milieu occurred secondary to SID just before the induction of CASP. Previous SID modified the pattern of intestinal inflammation induced by CASP. Subdiaphragmatic vagotomy had no influence on sepsis mortality in our model of postoperative peritonitis. Our results indicate a surgery-induced inflammation of the small intestine and the peritoneal cavity with bacterial translocation, which led to immune dysfunction and consequently to a more severe peritonitis.


Assuntos
Cavidade Peritoneal/cirurgia , Peritonite/mortalidade , Complicações Pós-Operatórias/mortalidade , Animais , Modelos Animais de Doenças , Imunidade , Camundongos , Peritonite/imunologia , Complicações Pós-Operatórias/imunologia
4.
Free Radic Biol Med ; 167: 12-28, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711420

RESUMO

Gas plasma is a partially ionized gas increasingly recognized for targeting cancer. Several hypotheses attempt to explain the link between plasma treatment and cytotoxicity in cancer cells, all focusing on cellular membranes that are the first to be exposed to plasma-generated reactive oxygen species (ROS). One proposes high levels of aquaporins, membrane transporters of water and hydrogen peroxide, to mark tumor cell line sensitivity to plasma treatment. A second focuses on membrane-expression of redox-related enzymes such as NADPH oxidases (NOX) that may modify or amplify the effects of plasma-derived ROS, fueling plasma-induced cancer cell death. Another hypothesis is that the decreased cholesterol content of tumor cell membranes sensitizes these to plasma-mediated oxidation and subsequently, cytotoxicity. Screening 33 surface molecules in 36 tumor cell lines in correlation to their sensitivity to plasma treatment, the expression of aquaporins or NOX members could not explain the sensitivity but were rather associated with treatment resistance. Correlation with transporter or enzyme activity was not tested. Analysis of cholesterol content confirmed the proposed positive correlation with treatment resistance. Strikingly, the strongest correlation was found for baseline metabolic activity (Spearman r = 0.76). Altogether, these data suggest tumor cell metabolism as a novel testable hypothesis to explain cancer cell resistance to gas plasma treatment for further elucidating this innovative field's chances and limitations in oncology.


Assuntos
Peróxido de Hidrogênio , NADPH Oxidases , Linhagem Celular Tumoral , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxirredução , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA