Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 221(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776132

RESUMO

Centromere association of the chromosomal passenger complex (CPC; Borealin-Survivin-INCENP-Aurora B) and Sgo1 is crucial for chromosome biorientation, a process essential for error-free chromosome segregation. Phosphorylated histone H3 Thr3 (H3T3ph; directly recognized by Survivin) and histone H2A Thr120 (H2AT120ph; indirectly recognized via Sgo1), together with CPC's intrinsic nucleosome-binding ability, facilitate CPC centromere recruitment. However, the molecular basis for CPC-Sgo1 binding and how their physical interaction influences CPC centromere localization are lacking. Here, using an integrative structure-function approach, we show that the "histone H3-like" Sgo1 N-terminal tail-Survivin BIR domain interaction acts as a hotspot essential for CPC-Sgo1 assembly, while downstream Sgo1 residues and Borealin contribute for high-affinity binding. Disrupting Sgo1-Survivin interaction abolished CPC-Sgo1 assembly and perturbed CPC centromere localization and function. Our findings reveal that Sgo1 and H3T3ph use the same surface on Survivin to bind CPC. Hence, it is likely that these interactions take place in a spatiotemporally restricted manner, providing a rationale for the Sgo1-mediated "kinetochore-proximal" CPC centromere pool.


Assuntos
Proteínas de Ciclo Celular , Centrômero , Histonas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Histonas/genética , Histonas/metabolismo , Cinetocoros/metabolismo , Fosforilação , Survivina/genética , Survivina/metabolismo
2.
J Cell Biol ; 217(1): 163-177, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187526

RESUMO

Precise regulation of kinetochore-microtubule attachments is essential for successful chromosome segregation. Central to this regulation is Aurora B kinase, which phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the N-terminal "tail" domain of Hec1, which is a component of the NDC80 complex, a force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, other mitotic kinases likely contribute to Hec1 phosphorylation. In this study, we demonstrate that Aurora A kinase regulates kinetochore-microtubule dynamics of metaphase chromosomes, and we identify Hec1 S69, a previously uncharacterized phosphorylation target site in the Hec1 tail, as a critical Aurora A substrate for this regulation. Additionally, we demonstrate that Aurora A kinase associates with inner centromere protein (INCENP) during mitosis and that INCENP is competent to drive accumulation of the kinase to the centromere region of mitotic chromosomes. These findings reveal that both Aurora A and B contribute to kinetochore-microtubule attachment dynamics, and they uncover an unexpected role for Aurora A in late mitosis.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , Centrômero/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Metáfase/fisiologia , Fosforilação , Potoroidae , Ligação Proteica/fisiologia , Fuso Acromático/metabolismo
3.
J Am Heart Assoc ; 5(8)2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27464790

RESUMO

BACKGROUND: Bypass grafting remains the standard of care for coronary artery disease and severe lower extremity ischemia. Efficacy is limited by poor long-term venous graft patency secondary to intimal hyperplasia (IH) caused by venous injury upon exposure to arterial pressure. We investigate whether photochemical tissue passivation (PTP) treatment of vein grafts modulates smooth muscle cell (SMC) proliferation and migration, and inhibits development of IH. METHODS AND RESULTS: PTP was performed at increasing fluences up to 120 J/cm(2) on porcine veins. Tensiometry performed to assess vessel elasticity/stiffness showed increased stiffness with increasing fluence until plateauing at 90 J/cm(2) (median, interquartile range [IQR]). At 90 J/cm(2), PTP-treated vessels had a 10-fold greater Young's modulus than untreated controls (954 [IQR, 2217] vs 99 kPa [IQR, 63]; P=0.03). Each pig received a PTP-treated and untreated carotid artery venous interposition graft. At 4-weeks, intimal/medial areas were assessed. PTP reduced the degree of IH by 66% and medial hypertrophy by 49%. Intimal area was 3.91 (IQR, 1.2) and 1.3 mm(2) (IQR, 0.97; P≤0.001) in untreated and PTP-treated grafts, respectively. Medial area was 9.2 (IQR, 3.2) and 4.7 mm(2) (IQR, 2.0; P≤0.001) in untreated and PTP-treated grafts, respectively. Immunohistochemistry was performed to assess alpha-smooth muscle actin (SMA) and proliferating cell nuclear antigen (PCNA). Objectively, there were less SMA-positive cells within the intima/media of PTP-treated vessels than controls. There was an increase in PCNA-positive cells within control vein grafts (18% [IQR, 5.3]) versus PTP-treated vein grafts (5% [IQR, 0.9]; P=0.02). CONCLUSIONS: By strengthening vein grafts, PTP decreases SMC proliferation and migration, thereby reducing IH.


Assuntos
Fotoquimioterapia/métodos , Túnica Íntima/patologia , Animais , Artérias Carótidas/efeitos dos fármacos , Elasticidade , Sobrevivência de Enxerto/fisiologia , Hiperplasia/prevenção & controle , Imuno-Histoquímica , Fármacos Fotossensibilizantes/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Rosa Bengala/farmacologia , Veia Safena/efeitos dos fármacos , Sus scrofa , Suínos , Enxerto Vascular/métodos , Rigidez Vascular/efeitos dos fármacos
4.
Tissue Eng Part A ; 22(13-14): 962-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27324118

RESUMO

Injuries to the articular cartilage surface are challenging to repair because cartilage possesses a limited capacity for self-repair. The outcomes of current clinical procedures aimed to address these injuries are inconsistent and unsatisfactory. We have developed a novel method for generating hyaline articular cartilage to improve the outcome of joint surface repair. A suspension of 10(7) swine chondrocytes was cultured under reciprocating motion for 14 days. The resulting dynamic self-regenerating cartilage (dSRC) was placed in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were implanted subcutaneously in nude mice and harvested after 6 weeks. Gross, histological, immunohistochemical, biochemical, and biomechanical analyses were performed. In swine patellar groove, dSRC was implanted into osteochondral defects capped with collagen gel and compared to defects filled with osteochondral plugs, collagen gel, or left empty after 6 weeks. In mice, the fibrin- and collagen-capped dSRC constructs showed enhanced contiguous cartilage matrix formation over the control of cells encapsulated in fibrin gel. Biochemically, the fibrin and collagen gel dSRC groups were statistically improved in glycosaminoglycan and hydroxyproline content compared to the control. There was no statistical difference in the biomechanical data between the dSRC groups and the control. The swine model also showed contiguous cartilage matrix in the dSRC group but not in the collagen gel and empty defects. These data demonstrate the survivability and successful matrix formation of dSRC under the mechanical forces experienced by normal hyaline cartilage in the knee joint. The results from this study demonstrate that dSRC capped with hydrogels successfully engineers contiguous articular cartilage matrix in both nonload-bearing and load-bearing environments.


Assuntos
Cartilagem/fisiologia , Condrócitos/metabolismo , Matriz Extracelular/química , Hialina/química , Hidrogéis/química , Regeneração , Animais , Matriz Extracelular/metabolismo , Hialina/metabolismo , Suínos
6.
Cytotherapy ; 18(6): 729-39, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27173749

RESUMO

BACKGROUND AIMS: The use of bone marrow-derived mesenchymal stromal cells (MSCs) in cell-based therapies is currently being developed for a number of diseases. Thus far, the clinical results have been inconclusive and variable, in part because of the variety of cell isolation procedures and culture conditions used in each study. A new isolation technique that streamlines the method of concentration and demands less time and attention could provide clinical and economic advantages compared with current methodologies. In this study, we evaluated the concentrating capability of an integrated centrifuge-based technology compared with standard Ficoll isolation. METHODS: MSCs were concentrated from bone marrow aspirate using the new device and the Ficoll method. The isolation capabilities of the device and the growth characteristics, secretome production, and differentiation capacity of the derived cells were determined. RESULTS: The new MSC isolation device concentrated the bone marrow in 90 seconds and resulted in a mononuclear cell yield 10-fold higher and with a twofold increase in cell retention compared with Ficoll. The cells isolated using the device were shown to exhibit similar morphology and functional activity as assessed by growth curves and secretome production compared to the Ficoll-isolated cells. The surface marker and trilineage differentiation profile of the device-isolated cells was consistent with the known profile of MSCs. DISCUSSION: The faster time to isolation and greater cell yield of the integrated centrifuge-based technology may make this an improved approach for MSC isolation from bone marrow aspirates.


Assuntos
Células da Medula Óssea/citologia , Separação Celular/métodos , Centrifugação/métodos , Células-Tronco Mesenquimais/citologia , Medula Óssea , Diferenciação Celular/fisiologia , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Ficoll , Humanos , Osteoblastos/citologia
7.
J Biomed Mater Res A ; 104(7): 1728-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26946064

RESUMO

Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728-1735, 2016.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular/metabolismo , Microesferas , Modelos Biológicos , Cicatrização , Anastomose Cirúrgica , Animais , Movimento Celular , Colágeno , Fibroblastos/citologia , Humanos , Sus scrofa , Resistência à Tração
8.
Plast Reconstr Surg ; 137(3): 887-895, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26910669

RESUMO

BACKGROUND: Photochemical tissue bonding uses visible light to create sutureless, watertight bonds between two apposed tissue surfaces stained with photoactive dye. When applied to nerve grafting, photochemical tissue bonding can result in superior outcomes compared with suture fixation. Our previous success has focused on immediate repair. It was the aim of this study to assess the efficacy of photochemical tissue bonding when performed following a clinically relevant delay. METHODS: Forty male Lewis rats had 15-mm left sciatic nerve gaps repaired with reversed isografts immediately (n = 20) or after a 30-day delay (n = 20). Repairs were secured using either suture or photochemical tissue bonding. Rats were killed after 150 days. Outcomes were assessed using monthly Sciatic Function Index evaluation, muscle mass retention, and nerve histomorphometry. Statistical analysis was performed using analysis of variance and the post hoc Bonferroni test. RESULTS: In both immediate and delayed groups, photochemical tissue bonding showed a trend toward greater recovery of Sciatic Function Index, but these results were not significant. The Sciatic Function Index was significantly greater when performed immediately. Significantly greater muscle mass retention occurred following photochemical tissue bonding in both immediate and delayed repairs. Values did not differ significantly between immediate and delayed groups. Histomorphometric recovery was greatest in the immediate photochemical tissue bonding group and poorest in the delayed suture group. Fiber diameter, axon diameter, myelin thickness, and G-ratio were not significantly different between immediate suture and delayed photochemical tissue bonding. CONCLUSIONS: Light-activated sealing of nerve grafts results in significantly better outcomes in comparison with conventional suture. The technique not only remains efficacious but may also help ameliorate the detrimental impacts of surgical delay.


Assuntos
Âmnio/transplante , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/cirurgia , Nervo Isquiático/cirurgia , Transplante de Tecidos/métodos , Animais , Modelos Animais de Doenças , Humanos , Masculino , Procedimentos Neurocirúrgicos/métodos , Distribuição Aleatória , Ratos , Ratos Endogâmicos Lew , Fatores de Tempo , Adesivos Teciduais/uso terapêutico
9.
J Reconstr Microsurg ; 32(6): 421-30, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26878685

RESUMO

Introduction Photochemical tissue bonding (PTB) uses visible light to create sutureless, watertight bonds between two apposed tissue surfaces stained with photoactive dye. In phase 1 of this two-phase study, nerve gaps repaired with bonded isografts were superior to sutured isografts. When autograft demand exceeds supply, acellular nerve allograft (ANA) is an alternative although outcomes are typically inferior. This study assesses the efficacy of PTB when used with ANA. Methods Overall 20 male Lewis rats had 15-mm left sciatic nerve gaps repaired using ANA. ANAs were secured using epineurial suture (group 1) or PTB (group 2). Outcomes were assessed using sciatic function index (SFI), gastrocnemius muscle mass retention, and nerve histomorphometry. Historical controls from phase 1 were used to compare the performance of ANA with isograft. Statistical analysis was performed using analysis of variance and Bonferroni all-pairs comparison. Results All ANAs had signs of successful regeneration. Mean values for SFI, muscle mass retention, nerve fiber diameter, axon diameter, and myelin thickness were not significantly different between ANA + suture and ANA + PTB. On comparative analysis, ANA + suture performed significantly worse than isograft + suture from phase 1. However, ANA + PTB was statistically comparable to isograft + suture, the current standard of care. Conclusion Previously reported advantages of PTB versus suture appear to be reduced when applied to ANA. The lack of Schwann cells and neurotrophic factors may be responsible. PTB may improve ANA performance to an extent, where they are equivalent to autograft. This may have important clinical implications when injuries preclude the use of autograft.


Assuntos
Regeneração Nervosa/fisiologia , Regeneração Nervosa/efeitos da radiação , Processos Fotoquímicos , Nervo Isquiático/lesões , Nervo Isquiático/transplante , Técnicas de Fechamento de Ferimentos , Animais , Modelos Animais de Doenças , Corantes Fluorescentes , Masculino , Músculo Esquelético/inervação , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Nervo Isquiático/patologia , Nervo Isquiático/efeitos da radiação , Cicatrização/fisiologia , Cicatrização/efeitos da radiação
10.
Plast Reconstr Surg ; 136(4): 739-750, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26397251

RESUMO

BACKGROUND: Nerve repair using photochemically bonded human amnion nerve wraps can result in superior outcomes in comparison with standard suture. When applied to nerve grafts, efficacy has been limited by proteolytic degradation of bonded amnion during extended periods of recovery. Chemical cross-linking of amnion before bonding may improve wrap durability and efficacy. METHODS: Three nerve wraps (amnion, cross-linked amnion, and cross-linked swine intestinal submucosa) and three fixation methods (suture, fibrin glue, and photochemical bonding) were investigated. One hundred ten Lewis rats had 15-mm left sciatic nerve gaps repaired with isografts. Nine groups (n = 10) had isografts secured by one of the aforementioned wrap/fixation combinations. Positive and negative control groups (n = 10) were repaired with graft and suture and no repair, respectively. Outcomes were assessed using sciatic function index, muscle mass retention, and histomorphometry. Statistical analysis was performed using analysis of variance and the post hoc Bonferroni test (p < 0.05). RESULTS: Cross-linking improved amnion durability. Photochemically bonded cross-linked amnion recovered the greatest sciatic function index, although this was not significant in comparison with graft and suture. Photochemically bonded cross-linked amnion recovered significantly greater muscle mass (67.3 ± 4.4 percent versus 60.0 ± 5.2 percent; p = 0.02), fiber diameter, axon diameter, and myelin thickness (6.87 ± 2.23 µm versus 5.47 ± 1.70 µm; 4.51 ± 1.83 µm versus 3.50 ± 1.44 µm; and 2.35 ± 0.64 µm versus 1.96 ± 0.47 µm, respectively) in comparison with graft and suture. CONCLUSION: Light-activated sealing of cross-linked human amnion results in superior outcomes when compared with conventional suture.


Assuntos
Terapia a Laser/métodos , Procedimentos Neurocirúrgicos/métodos , Traumatismos dos Nervos Periféricos/cirurgia , Nervo Isquiático/lesões , Nervo Isquiático/transplante , Técnicas de Fechamento de Ferimentos , Âmnio , Animais , Adesivo Tecidual de Fibrina , Corantes Fluorescentes/administração & dosagem , Humanos , Mucosa Intestinal , Masculino , Regeneração Nervosa , Distribuição Aleatória , Ratos , Ratos Endogâmicos Lew , Rosa Bengala/administração & dosagem , Nervo Isquiático/fisiologia , Suturas , Suínos , Adesivos Teciduais
11.
Cell Rep ; 11(4): 508-15, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25892238

RESUMO

Correction of faulty kinetochore-microtubule attachments is essential for faithful chromosome segregation and dictated by the opposing activities of Aurora B kinase and PP1 and PP2A phosphatases. How kinase and phosphatase activities are appropriately balanced is less clear. Here, we show that a centromeric pool of PP2A-B56 counteracts Aurora B T-loop phosphorylation and is recruited to centromeres through Shugoshin-1 (Sgo1). In non-transformed RPE-1 cells, Aurora B, Sgo1, and PP2A-B56 are enriched on centromeres and levels diminish as chromosomes establish bi-oriented attachments. Elevating Sgo1 levels at centromeres recruits excess PP2A-B56, and this counteracts Aurora B kinase activity, undermining efficient correction of kinetochore-microtubule attachment errors. Conversely, Sgo1-depleted cells display reduced centromeric localization of Aurora B, whereas the remaining kinase is hyperactive due to concomitant reduction of centromeric PP2A-B56. Our data suggest that Sgo1 can tune the stability of kinetochore-microtubule attachments through recruitment of PP2A-B56 that balances Aurora B activity at the centromere.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Pareamento Cromossômico , Humanos
12.
World J Stem Cells ; 7(1): 11-26, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25621102

RESUMO

Outcomes following peripheral nerve injury remain frustratingly poor. The reasons for this are multifactorial, although maintaining a growth permissive environment in the distal nerve stump following repair is arguably the most important. The optimal environment for axonal regeneration relies on the synthesis and release of many biochemical mediators that are temporally and spatially regulated with a high level of incompletely understood complexity. The Schwann cell (SC) has emerged as a key player in this process. Prolonged periods of distal nerve stump denervation, characteristic of large gaps and proximal injuries, have been associated with a reduction in SC number and ability to support regenerating axons. Cell based therapy offers a potential therapy for the improvement of outcomes following peripheral nerve reconstruction. Stem cells have the potential to increase the number of SCs and prolong their ability to support regeneration. They may also have the ability to rescue and replenish populations of chromatolytic and apoptotic neurons following axotomy. Finally, they can be used in non-physiologic ways to preserve injured tissues such as denervated muscle while neuronal ingrowth has not yet occurred. Aside from stem cell type, careful consideration must be given to differentiation status, how stem cells are supported following transplantation and how they will be delivered to the site of injury. It is the aim of this article to review current opinions on the strategies of stem cell based therapy for the augmentation of peripheral nerve regeneration.

13.
Biochem Soc Trans ; 43(1): 23-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25619243

RESUMO

The evolutionary conserved chromosomal passenger complex (CPC) is essential for faithful transmission of the genome during cell division. Perturbation of this complex in cultured cells gives rise to chromosome segregation errors and cytokinesis failure and as a consequence the ploidy status of the next generation of cells is changed. Aneuploidy and chromosomal instability (CIN) is observed in many human cancers, but whether this may be caused by deregulation of the CPC is unknown. In the present review, we discuss if and how a dysfunctional CPC could contribute to CIN in cancer.


Assuntos
Instabilidade Cromossômica , Segregação de Cromossomos , Neoplasias/genética , Animais , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Citocinese , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Complexos Multiproteicos/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Survivina
14.
Plast Reconstr Surg ; 134(4): 675-683, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24945949

RESUMO

BACKGROUND: Centrifugation is a popular processing method, with an unclear mechanism of action. Hypotheses include fat concentration, reduced inflammatory response by removal of blood, and concentration of adipose-derived stem cells. The authors performed multiple experiments to determine the role of centrifugation and compared it with a different processing method (mesh/gauze technique). METHODS: Lipoaspirate components were quantified after centrifugation at increasing speed to determine concentration efficacy. For comparison, the authors quantified the concentration efficacy of mesh/gauze. They also compared the number of adipose-derived stem cells isolated by either method. To determine the effects of each component, they compared fat alone to fat mixed with various spinoff components in a mouse model. They also compared centrifugation to mesh/gauze. RESULTS: The adipocyte fraction remains constant above 5000 g, whereas 1200 g results in 91 percent concentrated fat. Mesh/gauze also results in 90 percent concentrated fat. The number of adipose-derived stem cells in 1 g of fat was 1603 ± 2020 and 1857 ± 1832 in the centrifuge and mesh/gauze groups, respectively (p = 0.86). Five "add-back" groups were created: fat plus oil, fat plus surgical tumescence, fat plus fresh tumescence, fat plus cell pellets and fresh tumescence, and fat plus cell pellets. The fat-only group had better retention than the groups mixed with tumescence, regardless of whether it was surgical, fresh, or had cell pellets. Oil did not affect grafts. Centrifugation at 1200 g was equivalent to mesh/gauze (0.73 ± 0.12 g and 0.72 ± 0.13 g, respectively). CONCLUSIONS: Centrifugation improves graft retention by concentration of the adipocyte fraction. The concentration efficacy of mesh/gauze is equivalent to centrifugation at 1200 g, with equivalent in vivo outcomes.


Assuntos
Adipócitos/transplante , Centrifugação/métodos , Transplante de Células-Tronco , Adulto , Animais , Separação Celular/métodos , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade
15.
Plast Reconstr Surg ; 133(3): 571-577, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24263392

RESUMO

BACKGROUND: Capsular contracture is the most common complication following the insertion of breast implants. Within a decade, half of patients will develop capsular contracture, leading to significant morbidity and need for reoperation. There is no preventative treatment available and the recurrence rate remains high. Photochemical tissue passivation is a novel tissue-stabilization technique that results in collagen cross-linking. It can rapidly link collagen fibers in situ, preserving normal tissue architecture. By using this therapy to passivate the collagenous tissues of the implant pocket, the authors hope to prevent the development of pathogenic collagen bundles and subsequent capsule contracture. METHODS: Six-cubic centimeter tissue expanders were placed below the panniculus carnosus muscle along the dorsum of New Zealand white rabbits. Fibrin glue was instilled into each implant pocket to induce contracture. Treated pockets received photochemical tissue passivation by coating them with a photosensitizing dye and exposing the area to a 532-nm light. After 8 weeks, capsule tissue was harvested for histologic evaluation. RESULTS: Implant capsule thickness is the number one prognostic factor for contracture development. The authors demonstrated a 52 percent decrease in capsule thickness in the passivated group compared with controls. Photochemical tissue passivation resulted in fewer fibrohistiocytic cells and macrophages and in reduced synovial metaplasia and smooth muscle actin deposition. CONCLUSIONS: Photochemical tissue passivation significantly decreased both capsule thickness and smooth muscle actin deposition. It is a promising technique for preventing capsular contracture that can be performed at the time of initial surgery without a significant increase in procedure time.


Assuntos
Colágeno/efeitos dos fármacos , Contratura Capsular em Implantes/prevenção & controle , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Dispositivos para Expansão de Tecidos/efeitos adversos , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Contratura Capsular em Implantes/etiologia , Contratura Capsular em Implantes/patologia , Fármacos Fotossensibilizantes/administração & dosagem , Coelhos
18.
EMBO J ; 30(16): 3298-308, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21743441

RESUMO

Piwi proteins function in an RNAi-like pathway that silences transposons. Piwi-associated RNAs, also known as piRNAs, act as a guide to identify Piwi targets. The tudor domain-containing protein Tdrd1 has been linked to this pathway but its function has thus far remained unclear. We show that zebrafish Tdrd1 is required for efficient Piwi-pathway activity and proper nuage formation. Furthermore, we find that Tdrd1 binds both zebrafish Piwi proteins, Ziwi and Zili, and reveals sequence specificity in the interaction between Tdrd1 tudor domains and symmetrically dimethylated arginines (sDMAs) in Zili. Finally, we show that Tdrd1 complexes contain piRNAs and RNA molecules that are longer than piRNAs. We name these longer transcripts Tdrd1-associated transcripts (TATs). TATs likely represent cleaved Piwi pathway targets and may serve as piRNA biogenesis intermediates. Altogether, our data suggest that Tdrd1 acts as a molecular scaffold for Piwi proteins, bound through specific tudor domain-sDMA interactions, piRNAs and piRNA targets.


Assuntos
Chaperonas Moleculares/fisiologia , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/metabolismo , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Elementos de DNA Transponíveis/genética , Feminino , Substâncias Macromoleculares , Masculino , Oócitos/metabolismo , Oócitos/ultraestrutura , Ovário/metabolismo , Mapeamento de Interação de Proteínas , Interferência de RNA , Proteínas de Ligação a RNA/química , Frações Subcelulares/metabolismo , Testículo/metabolismo , Transcrição Gênica , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
19.
Nat Chem Biol ; 5(9): 664-72, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19648934

RESUMO

Cellular damage invoked by reactive oxygen species plays a key role in the pathobiology of cancer and aging. Forkhead box class O (FoxO) transcription factors are involved in various cellular processes including cell cycle regulation, apoptosis and resistance to reactive oxygen species, and studies in animal models have shown that these transcription factors are of vital importance in tumor suppression, stem cell maintenance and lifespan extension. Here we report that the activity of FoxO in human cells is directly regulated by the cellular redox state through a unique mechanism in signal transduction. We show that reactive oxygen species induce the formation of cysteine-thiol disulfide-dependent complexes of FoxO and the p300/CBP acetyltransferase, and that modulation of FoxO biological activity by p300/CBP-mediated acetylation is fully dependent on the formation of this redox-dependent complex. These findings directly link cellular redox status to the activity of the longevity protein FoxO.


Assuntos
Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Cisteína/genética , Fatores de Transcrição Forkhead , Humanos , Lisina/genética , Lisina/metabolismo , Camundongos , Mutação , Oxirredução , Peróxidos/farmacologia , Transdução de Sinais , Tiorredoxinas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição de p300-CBP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA