Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Pharmacol Res ; 208: 107400, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39251100

RESUMO

In aqueous environment amphiphilic molecules organize themselves into supramolecular structures deeply affecting the chemo-physical properties. Supramolecular assemby is also crucial in the pharmaceutical development of bioactive lipophilic molecules whose attitude to self-aggregate is a recognized factor affecting the in vivo pharmacokinetic, but can also play a crucial role in the interaction with the biological targets in in vitro tests. In aqueous solution, amphiphilic drugs exist in a complex equilibrium involving free monomers, oligomers and larger supramolecular aggregates held together by noncovalent bonds. In this review we focus our attention on the dual effect of drugs self-assembly, which can both reduce the availability of active compounds and create multivalent scaffolds, potentially improving binding affinity and avidity to cellular targets. We examine the effect of aggregation on different classes of amphiphatic molecules with significant biological activities, such as immunomodulatory, anti-tumor, antiviral, and antibiotic. Our purpose is to provide a comprehensive overview of how supramolecular chemistry influences the pharmacological and biological responses of amphiphilic molecules, emphasizing the need to consider these effects in early-stage drug development and in vitro testing. By elucidating these phenomena, this review aims to offer insights into optimizing drug design and formulation to overcome challenges posed by self-aggregation.


Assuntos
Coloides , Tensoativos , Humanos , Animais , Tensoativos/química , Tensoativos/farmacologia , Preparações Farmacêuticas/química
3.
Anal Chem ; 96(8): 3362-3372, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38348659

RESUMO

Recently, we described synthetic sulfolipids named Sulfavants as a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. The members of this family, Sulfavant A (1), Sulfavant R (2), and Sulfavant S (3), showed important effects on triggering receptor expressed on myeloid cells 2 (TREM2)-induced differentiation and maturation of human dendritic cells (hDC), through a novel cell mechanism underlying the regulation of the immune response. As these molecules are involved in biological TREM2-mediated processes crucial for cell survival, here, we report the synthesis and application of a fluorescent analogue of Sulfavant A bearing the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene moiety (Me4-BODIPY). The fluorescent derivative, named PB-SULF A (4), preserving the biological activity of Sulfavants, opens the way to chemical biology and cell biology experiments to better understand the interactions with cellular and in vivo organ targets and to improve our comprehension of complex molecular mechanisms underlying the not fully understood ligand-induced TREM2 activity.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Compostos de Boro/farmacologia , Compostos de Boro/química , Adjuvantes Imunológicos/farmacologia , Glicoproteínas de Membrana , Receptores Imunológicos
4.
Nat Prod Res ; 37(20): 3484-3491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35700078

RESUMO

Diverse natural and synthetic furan derivatives have shown biological activity. Here, we describe the preparation of benzyl and arylethyl ß-furanamides with OH or OMe aryl substituents by an adapted sustainable method from a furoic acid using methyl chloroformate. Symmetric and asymmetric ß,ß'-furanamides have instead been prepared using azabenzotriazole based catalyst (HATU). The products have been evaluated for their antimicrobial properties on Gram positive and Gram negative bacteria. Just a minimal not-significant activity has been observed in some derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA